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Abstract—Accurate and quick relative-distance measurement
is crucial for supporting various intelligent transparent services,
such as multi-device collaboration, screen rotation, and multi-
device mirroring. Unfortunately, current methods often rely on
single-modality sensing, resulting in various limitations: BLE-
based and WiFi-based methods suffer from coarse-grained es-
timation, and ultrasound-based approaches suffer from limited
sensing range.

In this work, we aim at designing a distance-measurement sys-
tem that enjoys long range, high accuracy, and small delay. Our
designed system, named BAIR, relies on low-energy Bluetooth
(BLE), acoustic sensors, and inertial measurement units (IMU)
equipped on commercial smartphones for fine-grained and real-
time relative distance estimation. BAIR effectively aligns multiple
sensory signals with different sampling rates via the improved
Kalman filter technology. To mitigate IMU’s integration errors,
BAIR calculates the average velocity over a preceding period
and uses this, alongside accumulated velocity data from the IMU,
significantly improving distance prediction accuracy.

We implemented our BAIR system on smartphones and
conducted extensive experiments to evaluate its performance.
Specifically, in static scenarios, BAIR achieves a mean average
error (MAE) of 11 cm. In moving scenarios, the cumulative
distribution function (CDF) values for 95%, 80%, and 50% are
31 cm, 13 cm, and 8 cm, respectively. The memory footprint of
BAIR is 16.41 MB. We release an initial version of BAIR and a
video demo on GitHub1 and YouTube2.

Index Terms—ranging, wireless sensing, multi-modality, mobile
device, smartphone

I. INTRODUCTION

As the level of intelligence and quantity of personal ter-
minals gradually increase, the collaboration and interaction
among multiple devices are attracting increasing attention.
For instance, leading companies such as Apple, Samsung,
and HUAWEI have continuously iterated related functions
for several years, including iWatch-assisted Mac unlocking,
multi-screen collaboration, screen rotation, iPhone mirroring,
etc. How to accurately estimate the relative distance between
two devices is a fundamental issue in achieving multi-device
collaboration.

Although there have been many works on localization
problems in the arts, including WiFi-based [1], [2], sound-
based [3], and BLE-based [4], their systems rely on a device
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with a fixed position as an anchor and then obtain the relative
positions of other devices to the anchor device. However, in
the scenario of device interaction, the locations of all devices
(e.g. laptops, smart watches, mobile phones, etc.) are often
unfixed. [5]–[7] explore the possibility of self-localization
for non-stationary devices, however, their sensing accuracy
and range are insufficient. [5] develops a distributed FMCW
system to achieve a tracking accuracy of 5 mm but it re-
quires an elaborate calibration process to remove the unknown
clock offset. [6] introduces a self-calibrated acoustic ranging
system that achieves sub-millimeter accuracy on distributed
asynchronous devices but its ranging distance is limited to 3
meters. [7] propose two indoor pedestrian localization methods
based on contact information obtained from BLE installed in
smartphones but its average positioning error is 0.74 m. In a
flexible device interaction scenario, such as online conference
transfer between devices, the system is not only required to
provide a rough measurement over long distances but also
to track movement and facilitate real-time interaction over
short distances. Moreover, despite the high accuracy that
many existing excellent algorithms can achieve, such as the
EM algorithm, they often require iterations lasting dozens
of seconds or even longer. This is unacceptable in device
interaction scenarios.

In this work, we propose BAIR, a relative distance-ranging
system for smart devices. Our system can be practically
deployed and used on commercial smartphones. It enjoys
several favorable characteristics, including:

• Great Universality. BAIR uses the existing COTS de-
vices instead of installing other sophisticated hardware
or making hardware changes on smartphones. Also, it
does not rely on location-fixed anchor devices, and can
still obtain their relative distance for device interaction
when all the device locations are unknown or change.

• High Availability. On one hand, the working distance
range of the system should be up to 10 meters to meet
the needs of scenarios such as smart home wake-up in
home settings and inter-device conference flow in office
settings. On the other hand, the ranging error at short
distances should be less than 10 centimeters to satisfy
the requirements for sensitive device interaction.

• Real-time Response. To achieve a good user experience
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with device interaction, the ranging process must not take
more than 0.1 s (humans’ persistence of vision is 0.1 s).
If the update frequency exceeds 10 Hz, the changes will
not be noticeable to the user.

The variety of sensors that exist in the end devices gives
us opportunities. For example, BLE delivers broader coverage
and IMUs offer continuous tracking capabilities. However, two
challenges need to be solved first:

(1) How to align multi-modal sensory signals? The mea-
sured entities and sampling rates of different sensors vary. To
fuse multimodal data for ranging, we need to obtain a consis-
tent representation of different modal data. And due to device
differences, their information density is hugely different. For
instance, sound-based methods operate at a frequency of 1 Hz
and measure absolute distances between devices, while IMUs
measure relative distances with a much higher sampling rate
of 50 Hz.

(2) How to achieve real-time response under the condition
of limited computing power? In order to meet the demands of
real-world scenarios, we need to obtain ranging results within
0.1 seconds. However, the computational power of terminals
such as mobile phones is relatively weak. For instance, the
computational power of the Qualcomm 865 chip is only 15
tops, which needs to be shared by dozens or even hundreds
of system services and applications simultaneously.

To address these issues, we employ the Kalman filter to
fuse multi-modal data. Firstly, the Kalman filter formulation
incorporates both absolute and relative distances. Secondly, the
parameters are updated exclusively upon receiving new abso-
lute distance measurements. The dead reckoning algorithm is
running during the interval. Thirdly, the Kalman filter utilizes
a limited number of parameters and features a straightforward
formula, thus conserving memory, power, and computational
resources.

Summary of results: We implement BAIR using COTS
BLEs, acoustic sensors, and IMUs on smartphones. We first
test it in static scenarios. The results show that BAIR achieves
a MAE of 11 cm, compared to 1.9 cm with single ultrasound
signals and 99 cm with single BLE. BAI-BLE. BAIR has
a working range of up to 10 meters, outperforming the 6-
meter range of ultrasound. In short distances (< 4 m) and
long distances (4 m ∼ 6 m), the MAEs are 2 cm and 18
cm, respectively. Next, we conduct experiments in moving
scenarios. The CDF values for 95%, 80%, and 50% are 31
cm, 13 cm, and 8 cm, respectively. Compared with other
ranging technologies, BAIR is the only one that satisfies all
conditions: universality, long range (10 m), low error (11
cm), and real-time response (0.1 s). Additionally, we perform
ablation studies that prove our fusion method is effective in
reducing error. Furthermore, we explore whether the speed of
movement and device type affect the performance of BAIR.
We find that its influence is little and acceptable and the
ranging error remains decentimeter level. Finally, we test
BAIR’s memory usage and power consumption. Its memory
footprint is just 16.41 MB and it consumes 15% of battery life
after one hour of operation.

Contributions: The main contributions of our work are
in signal-fusion from various sensors, commercial system
implementation on smartphones, and extensive evaluations,
specifically 1) We propose a novel multi-modal fusion algo-
rithm that leverages BLEs, acoustic sensors, and IMUs. By
employing a dual-Kalman filter approach, we effectively fuse
heterogeneous and asynchronous signals from these sensors;
2) We develop a ranging system called BAIR. It has been
successfully deployed in smartphones with a minimal storage
footprint of just 16.41 MB; 3) We systematically evaluate the
performance of BAIR system in static and moving settings.
Our results demonstrate that our BAIR system provides a real-
time ranging with high precision in short distances and high
availability in long distances.

The rest of this paper is organized as follows: Section II
reviews related works about indirect and direct ranging meth-
ods; Section III demonstrates the implementation of three
modules in our work; Section IV details our methodology;
Section V first illustrates the parameter settings when deployed
on smartphones and then presents various experiments and
discusses the results; Section VI concludes our work.

II. RELATED WORKS

Ranging can be categorized as indirect ranging and direct
ranging.

A. Indirect Ranging

Indirect ranging, such as localization-based ranging, de-
termines the relative distance between two devices by first
acquiring their positions and then deriving the target results.

Based on the type of signal and sensors being used, lo-
calization methods can be classified to Wi-Fi-based [8]–[10],
BLE-based [11], [12], and sound-based [3], [13] approaches.
However, these methods require fixed anchor devices such as
Wi-Fi access points, beacons, or speakers in the environment.
They either need to be conducted in a lab or require significant
manpower to deploy due to authorization policies and the non-
universality of these devices in daily life.

Some localization works utilize the Klaman filter to fuse
signals from different modules and perform well, such as [14],
[15]. However, they do not focus on relative distance problems
based on smartphones.

B. Direct Ranging

Direct ranging determines the relative distance between two
devices with a single measurement.

1) Single-modal Ranging Methods: The most common
ranging methods are sound-based methods [5], [6], [16]. These
methods calculate relative distance based on the time of flight
(TOA) between devices. Although they can achieve high pre-
cision (cm- or even mm-level error), they face challenges such
as susceptibility to disturbances and limited range (around
3 meters). Other researchers have explored the use of BLE
RSSI for ranging [7], but it can only attain m-level accuracy
because RSSI is easily interrupted by people’s movements and
environmental changes.



Fig. 1. Distribution of BLE RSSI at 4 m. To demonstrate the statistical
properties of Gaussian distributions, we collect a total of 500 BLE packets.
The orange histogram represents the number of BLE packets received at each
RSSI value. The red curve is the fitting curve of the BLE RSSI distribution.

2) Multi-modal Ranging Methods: Due to the shortage of
single-modal ranging systems in range or accuracy, more re-
searchers become interested in multi-modal-fusion techniques
[17]. Feishang et al. [18] demonstrate that multi-modal fusion
can theoretically lower the information entropy’s lower bound,
which means better performance. [19], [20] use probability
models, which are of high computational complexity and
strong model dependence. Deep learning techniques [21], [22]
perform well on this problem, but it demands a lot of time
and effort to build a dataset and its memory footprint is huge,
which hinders it from practical use.

In order to achieve real-time implementation on a resource-
limited smartphone platform, we need to develop a simple and
efficient fusion algorithm. As for the device’s relative distance
ranging problem, we can model the problem as a linear model.
Therefore, a Kalman filter algorithm, which is computationally
light, can be applied.

III. RANGING BY SINGLE MODAL SENSORS

In this section, we provide an outline of the implementation
of BLE, IMU, and ultrasound-based methods in our work.

A. BLE-based Ranging

BLE is a wireless communication technology mainly used
for short-distance (within a few dozen meters) data transmis-
sion. It offers low power consumption, high transmission rate,
and swift connection speed, which meet the demand of IoT
devices.

Nowadays, researchers have investigated BLE on a mobile
phone and beacons fixed in the environment to estimate the
user’s location. Theoretically, the most used model of the
relationship between BLE RSSI and transmission distance is
P = P0 − 10n lg(d/d0) + δ [23], as we only have access
to BLE RSSI by the smartphone. In real-world sampling,
nearby environments easily disturb the RF signal, leading to
heavy fluctuations. We collect 500 BLE packets at 4 m and it
shows a Gaussian distribution (shown in Fig. 1). To relieve the
fluctuations, we adopt a Gaussian filtering model [11], which
effectively filters out small probability, and short-term signal
disturbances, thereby enhancing signal stability and accuracy.

Fig. 2. Relationship between BLE RSSI and distance in three different
environments. It is not ideally linear.

In the real-world test, we discover a phenomenon that the
relationship between RSSI and distance is not linear (shown
in Fig. 2). There is a turning point around 4 meters, after
which the RSSI becomes more volatile. We preliminarily
judge that this may be caused by the system’s adaptive
frequency hopping (AFH) mechanism. That is, to improve the
stability of data transmission and disturbance resistance, BLE
will automatically choose its working frequency, leading to
changes in transmitting power and receiver sensitivity. So we
divide the task into two segments: short-distance (0 ∼ 4 m)
and long-distance (4 ∼ 10 m) and use the Least Square (LS)
method for curve fitting.

For real-time distance measurement, we use a weighted
moving average to smooth real-time signals. However, extreme
jumps due to environmental changes still occur occasionally
even with Gaussian filtering. To mitigate these anomalies,
we implement an outlier detection mechanism, retaining only
data within the range [µ− 3σ, µ+ 3σ] both computed over a
specified time window. Then, distance estimation is conducted
using a pre-trained model based on filtered data.

B. Ultrasound-based ranging

The most common method is based on time of flight (ToF).
By measuring the time difference between transmission and
reception, the distance can be calculated by d = c·t

2 . However,
the local clocks of different devices are not the same, which
always causes estimation errors. To avoid this, we utilize the
local elapsed time between two time-of-arrival (ETOA) [16].
The distance can be measured by

D =
c

2
· ((tB1 − tA0) + (tA3 − tB2))

where tA0 and tB1 denote the time when the first sound wave
was sent and received, tB3 and tA3 denote the time when
the second sound wave was sent and received, and c is the
speed of sound. Many experiments have demonstrated that
temperature influences ranging errors because sound speed
is temperature-dependent [24]. The current sound speed c is
calculated using the formula c = 331.4 + 0.61T , where T is
the current temperature in Celsius.

To find out the arrival time, we calculate the cross-
correlation between recorded data and the reference signal.
The surrounding noise causes a lot of messy peaks and the



Fig. 3. Example of cross-correlation in a time slot. Two peaks are detected.
The first is what we want and the second is caused by the multi-path effect.
The cross-correlation of disturbance is zoomed in on the right.

multi-path effect may generate other peaks around the primary
peak. To solve these issues, we employ two thresholds. The
first one (blue line in Fig. 3) aims to filter the noise peaks. If
the value of cross-correlation is smaller than the threshold, it
must not be generated by the sound. The other is to judge the
peak’s received energy. If the energy of the received signal is
smaller than the threshold, it can be considered not exit.

C. IMU-based ranging

We utilize the inertial sensor, which includes the accelerom-
eter and gyroscope, embedded in smartphones. We collect the
acceleration and angular velocity data from the smartphone
with a sampling frequency of 50 Hz. To calibrate the minor
offset of the phone IMU system, we have analyzed the sensor
data with the help of Allan variance modeling [25].

Data obtained from accelerometers and gyroscopes is in
the device coordinate. We need to convert them to ground
coordinates in order to know human motion. To avoid Gimbal
Lock, we employ the quaternion instead of the Euler Angle.
Quaternion is important in coordinate conversion, which can
be acquired from the Android System. Mostly, a quaternion
is represented as a four-vector q = [qw, qx, qy, qz]. The
conversion formula is

Rg = q
⊗

Ri
⊗

qT

where Rg and Ri are denoted geocentric coordinate system
and device coordinate system [26].

Subsequently, the acceleration data can be doubly integrated
to determine the IMU’s position relative to a known starting
point. However, due to inherent noise in accelerometers and
gyroscopes, directly integrating acceleration and angular ve-
locity signals results in cumulative errors or “drift” that rapidly
increase over time. Therefore, in practical applications, the
IMU is used only for short-term distance estimation.

IV. SYSTEM DESIGN OF BAIR

The schematic diagram of BAIR is shown in Fig. 4, which
consists of two parts: ‘Ranging’ and ‘Real-time Distance
Fusion’. We have implemented the first part in Section III.
We will give a detailed description of the second part in

(a)

(b)

Fig. 4. Overview of the system. (a) The red dots represent the absolute
distance measuring times. During the intervals, the IMU works in pedestrian
dead reckoning (PDR) mode. The update frequency of distance is 10 Hz.
(b) The diagram illustrates the working flow of our proposed BAIR system.
In the “Ranging” part (Section III), three modules provide their respective
measurement results. In the “Real-time Distance Fusion” part (Section IV),
the dual-Kalman filter is used to predict the relative distance and correct the
velocity error of the IMU.

this section and it can further be divided into three blocks:
BA-fusion, KF-prediction of distance, and KF-correction of
velocity. The process is illustrated in Algorithm 1

A. BA-fusion

If only BLE is available, the absolute distance is derived
from BLE. When BLE and acoustic sensors are both capable
of measuring distance, we choose acoustic sensors as our
result provider because of its high accuracy. In short distances,
environmental noises may cause sound detection failure, in
which case BLE takes its role to prevent the system from
collapsing or long-time drift. Failure is determined if we do
not receive the ultrasound result in 3 seconds.

The interaction between BLE and acoustic sensors involves
one device notifying the other via BLE before each sound
measurement is initiated. This notification helps reduce false
positive detections caused by other sounds in the environment.
Additionally, the current distance information is useful for
selecting the appropriate short-distance or long-distance fitting
model for BLE.

B. KF-prediction of distance

The accelerometer data from the IMU is utilized to compute
the current velocity and displacement for the last period using
an inertial navigation algorithm. Once the absolute distance is
obtained from acoustic sensors or BLE, the Kalman filter (KF)



Algorithm 1: Real-time Distance Fusion
Input: distance from BLE or ultrasound signals,

velocity and acceleration from IMU
Output: predicted distance xnow

1 while run do
2 if velocity and acceleration then
3 integrate velocity

∆v = (aprev + anow) ·∆tIMU/2
4 integrate distance

∆x = v ·∆tIMU +∆v ·∆tIMU/2
5 update velocity v ← v +∆v
6 update distance xrel ← xrel +∆x
7 end
8 if distance then
9 predict distance xnow = KF (xabs, xrel)

10 differentiate vdiff = (xnow − xprev)/∆t
11 error correction v ← KF (vIMU , vdiff )
12 reset xref ← 0
13 end
14 end

prediction of distance executes, providing the current relative
distance. The absolute distance acts as the observational input
for the Kalman filter, while the relative distance represents the
input information.

The Kalman filter method used in the fusion algorithm con-
sists of two parts: state prediction and parameter correction:

1) State Prediction {
x̂−
k = x̂k−1 + uk

P−
k = Pk−1 +Q

(1)

where u is the input variable, x is the predicted variable,
P is the covariance error, and Q is the observation noise
error.

2) Parameter Correction
Kk =

P−
k

P−
k +R

x̂k = x̂−
k +Kk · (zk − x̂−

k )

Pk = (1−Kk) · P−
k

(2)

where z is the observed variable, K is the Kalman gain,
and R is the observation error.

C. KF-correction of velocity

The average velocity over the last period is calculated using
∆d
∆t , where ∆d denotes the distance difference and ∆t is the
time difference from the last period. This average velocity
functions as observational data for the Kalman filter, while the
accumulated IMU velocity acts as the input data. The predicted
velocity from the Kalman filter for the current period is then
used as the initial velocity for the subsequent period. After
each cycle, the IMU’s accumulated distance and velocity are
reset to zero, preventing long-term error accumulation due to
IMU integration.

The IMU operates at a frequency of up to 50 Hz, whereas
BLE and acoustic sensors work at a much lower frequency,
approximately 3 Hz and 1 Hz. So their updates do not coincide.
To address this discrepancy, the dual-Kalman filter executes
only upon receiving measurement results from BLE or sound.
During the intervals, dead reckoning is performed using the
IMU data (shown in Fig. 4(a)).

The accuracy and effective range of BLE and acoustic
sensors differ significantly. In scenarios where one device is
mobile, and the other remains stationary, distance sensing
is categorized into short-distance and long-distance phases.
BLE offers meter-level accuracy over distances up to 10
meters, while sound provides centimeter-level precision within
a range of less than 5 meters. Consequently, the sound is
employed during the short-distance phase and BLE during the
long-distance phase. This approach also conserves smartphone
energy since generating high-frequency sound signals is more
power-intensive than BLE.

This approach leverages the IMU’s high sampling rate and
responsiveness while mitigating the drift issues. By integrating
IMU measurements with data from other sensors such as
Bluetooth and acoustic sensors, we enhance ranging accuracy
and stability. The absolute distance data from these additional
sensors calibrates and corrects the IMU’s output, while the
displacement calculated by the IMU provides constraint infor-
mation for BLE and ultrasound ranging.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we first introduce the implementation of
BAIR on Android system and the experiment settings. Then,
we demonstrate the performance of our method in static
scenarios and moving scenarios. Next, we explore the impact
of some variables on performance. Finally, we point out the
memory occupation and power consumption of the system on
a smartphone.

A. Implementation

We have implemented BAIR on Android systems. For the
BLE-based ranging method, we set the lower threshold of
the Gaussian filter modal as 0.6. The transmitting frequency
of BLE is 3 Hz. For the ultrasound-based ranging method,
the sampling rate of sound is set to 48000 Hz. The duration
of each chirp is 60 ms. To ensure that most people are
insensible to the modulated chirp signals, we use a 3 kHz
bandwidth, sweeping from 17.5 kHz to 20.5 kHz, which is
nearly ultrasonic. Although a larger frequency can not be heard
either, the signal is distorted due to hardware limitations. For
IMU, the sampling rate is 50 Hz. Kalman filter parameters P
and Q are chosen according to [27].

B. Experimental Setup

Fig. 5(a) gives an outline of the evaluation environment. It is
the main passage of our office building. The length and width
of the floor tiles are both 0.8 m. In order to get a realistic
assessment, we follow daily scenarios without controlling the
movement and whisper of non-staff members. We use two



(a) (b)

Fig. 5. Experiment setups. (a) The evaluation environment. The red stars
mark the position of the server and client. The blue dashed line represents the
moving track. (b) The evaluation setting. The server and Client are marked
with red boxes and indicated nearby.

smartphones to evaluate the ranging performance. HUAWEI
P40 Pro is the server and HUAWEI Mate40 Pro is the client.
The server is fixed on the tripod and the client is held by a
volunteer (as shown in Fig. 5(b)).

C. Static Scenario

In static scenarios, we select a set of test points ranging
from 0.8 m to 9.6 m, with intervals of 0.8 m. At each point,
we collect 10 results three times.

a) Overall performance: The average of 30 results for
each test point is depicted in Fig. 6. The ultrasound-based
ranging method can measure distances within 6 m and its
MAE is 1.9 cm. Although it can sometimes successfully
measure when the distance exceeds 6 m, the high probability
of failure prevents us from considering this case. The BLE-
based ranging method can measure distances up to 10 m but
its accuracy is much lower than the ultrasound-based method.
As we analyzed earlier, BLE RSSI’s turning point is around
4 m, which also causes the ranging error near 4 m. The
two-stage fit trick performs well except for the boundary
point. The MAE of the BLE-based ranging method is 99
cm. Our proposed BAIR achieves 11 cm MAE and increases
the ranging distance to 10 m. It demonstrates that our fusion
algorithm has a practical effect, broadening sound’s ranging
distance and improving BLE’s ranging accuracy. Considering
two different use cases - interaction between devices in short
distances and arrival detection in long distances, we calculate
MAE below 4 m and MAE from 4 m to 10 m. They are 2 cm
and 18 cm, respectively. Our goal of achieving high accuracy
at short distances and maintaining feasibility at long distances
is realized in the static scenario.

b) Comparison with other technologies: Here, we com-
pare BAIR with other wireless ranging technologies across five
different aspects (as shown in TABLE I). CAT [5], Sword-
Fight [28] and SCALAR [6] utilize ultrasound to measure
the distance between two devices achieving high accuracy and
real-time response. However, CAT requires a series of speakers
in addition to the smartphones. The SwordFight and SCALAR
systems suffer from limited range, which may not suffice for
many indoor interaction purposes. Shino Shiraki et al. [7] use
BLE RSSI to determine the relative distance but still need

beacons to assist, and its error margin in static scenarios is
quite large.

Our proposed BAIR system integrates BLE RSSI, ultra-
sound signals, and IMU, only requiring two COTS smart-
phones without any hardware modifications. With a range of
10 meters, it surpasses other mentioned technologies and is
well-suited for most indoor scenarios. Additionally, its dual-
Kalman algorithm ensures real-time response.

c) Results under different environments: To explore the
impact of different environments on our BAIR system, we
conducted experiments in four different environments: meeting
room, office, passage, and playground (as shown in Fig. 9).
The MAE results are presented in TABLE II. The data shows
that BAIR performs better in spacious environments with few
obstacles, such as passages and playgrounds, compared to
more complex indoor environments like meeting room and
office. The primary reasons for this disparity are that noisy
environments lead to the early failure of ultrasound signals,
and complex environments cause more multi-path effects.

D. Moving Scenario

In the moving scenarios, volunteers are required to move
towards and backwards to the server three times. Suppose that
our track is a straight line. We shoot a video for each term
and manually align ground truth.

a) Different fusion combinations: Fig. 7 presents the Cu-
mulative Distribution Function (CDF) curves for our proposed
system alongside other variants from ablation studies. Notably,
our proposed system outperforms the other four configurations
at both the CDF 0.5 and CDF 0.8 marks. These results
compellingly illustrate the efficacy of our multi-modal fu-
sion approach. Interestingly, while the Ultrasound+BLE+IMU
configuration demonstrates slightly inferior performance com-
pared to the Ultrasound+IMU setup at the CDF 0.95 point, it
compensates with a considerably extended ranging distance.
Specifically, Ultrasound+BLE+IMU remains effective up to 10
m range, whereas the Ultrasound+IMU combination begins to
fail beyond 5 meters. This highlights the trade-offs between
accuracy and range. The results underscore the superior overall
capability of our proposed multi-modal fusion system, which
attains high accuracy in short distances and feasibility in long
distances.

b) Impact of the moving speed: The volunteers are
required to walk at three different speeds: slow (0.1 m/s),
middle (0.2 m/s), and fast (0.4 m/s). The results are shown
in Fig. 8. The algorithm error increases with the increase of
speed because a larger speed means a larger fluctuation of
the received signal leading to the ranging error of BLE and
ultrasound. The ranging error of three different speeds is less
than 0.2 m, 0.3 m, and 0.4 m when the value of CDF is equal to
0.5, 0.8, and 0.95, respectively. The difference between them
is not obvious. It turns out that our KF-correction of velocity
plays a role.

c) Impact of device type: To show that our system is
applicable to other devices, three smartphones of HUAWEI
are used in the test. The types of their models, operation



Fig. 6. Distance ranging comparison in static
scenario.

Fig. 7. CDF comparison for different sensor
combinations.

Fig. 8. CDF comparison for different moving
speed.

TABLE I
COMPARISON WITH OTHER TECHNOLOGIES

Technology Sensing Modality Universality Range Error (Static Scenarios) Real-Time

CAT [5] Ultrasound 7 m 9 mm
SwordFight [28] Ultrasound 3 m 2 cm

SCALAR [6] Ultrasound 3 m 0.39 mm
Shino Shiraki et al. [7] RSSI 15 m × 30 m 0.74 m -

BAIR RSSI, Ultrasound, IMU 10 m 11 cm

(a) Meeting room (b) Office (c) Passage (d) Playground

Fig. 9. Four different test environments.

TABLE II
MAE UNDER DIFFERENT ENVIRONMENTS

meeting room office passage playground

MAE 15 cm 17 cm 11 cm 8 cm

TABLE III
DIFFERENT TYPES OF SMARTPHONES

Smartphone Type Operation System Processor

P40 Pro Harmony 4.0.0 HUAWEI Kirin 990 5G

Mate40 Pro Harmony 4.0.0 HUAWEI Kirin 9000

Nova10 SE Harmony 4.0.0 Qualcomm Snapdragon 680

systems, and processors are shown in TABLE III. For each
pair of test devices, the BLE offline model should be trained
again. The results of the combination of different servers and
clients are displayed in TABLE IV. In the first column, P, M,
and N represent the P40 Pro, Mate40 Pro, and Nova10 SE,
respectively. The standard configuration is “Server+Client”.

When the CDF equals 0.5, the errors are approximately 10

TABLE IV
ERROR CORRESPONDING TO DIFFERENT CDF VALUES FOR DIFFERENT

SMARTPHONE PAIRS

CDF 0.95 CDF 0.8 CDF 0.5

P+M 29.11 cm 17.95 cm 10.39 cm
P+N 41.19 cm 23.18 cm 15.13 cm
M+P 34.28 cm 18.63 cm 12.21 cm
M+N 51.19 cm 27.56 cm 18.23 cm
N+P 32.12 cm 21.94 cm 11.51 cm
N+M 32.29 cm 22.38 cm 12.47 cm

cm, which is comparable to the performance of the Ultra-
sound+IMU setup at short distances. This indicates that ultra-
sound plays the dominant role in short-distance measurements.
However, from CDF 0.5 to CDF 0.95, there is a significant
increase in ranging errors. This surge occurs because, when
ultrasound fails to measure accurately, BLE takes over, and
BLE’s accuracy is substantially lower than that of ultrasound.
The performance is acceptable because the ratio of error to
distance is not large, which meets our requirements of high



accuracy at short distances and reliability at long distances.
Due to hardware differences, the performance of different

types of smartphones varies. We found that the performance
is more influenced by the client device, particularly its IMU.
For instance, when the Nova10 SE serves as the client (in P+N
and M+N configurations), the ranging error is larger compared
to other pairs. However, when the Nova10 SE acts as the
server (in N+P and N+M configurations), its performance is
comparable to smartphone pairs that do not include the Nova10
SE.

E. Memory Usage and Power Consumption

In order to be practically deployed on mobile devices
without affecting the use of other applications or functions,
our proposed system needs to be small in both memory usage
and power consumption. For memory occupation, we check
the app management in the settings of the smartphone and find
that it is 16.41 MB, which is much smaller than most existing
applications. For power consumption, we let our system run
1 hour. In BLE+IMU mode, the smartphone battery dropped
5%. In Ultrasound+BLE+IMU mode, the smartphone battery
dropped 15%. It shows that ultrasound generating consumes
much more power than BLE. So we can do a trade-off between
long-distance ranging accuracy and power consumption. The
strategy is ultrasound ranging is enabled only when the device
enters the close-range scene.

VI. CONCLUSION

In this work, we present BAIR for real-time relative distance
measurement between two devices using Commercial Off-
The-Shelf (COTS) BLEs, acoustic sensors, and IMUs on
smartphones. A key innovation is employing a lightweight
improved Kalman filter to fuse the heteroid and asynchronous
signals from three modules. Its memory footprint is 16.41 MB.
BAIR has been tested with extensive experiments. It shows
great universality when the environment and devices change,
and keeps the error at decentimeter level both in static and
moving scenarios. Our work holds promise for the future, as
it can be utilized in a ubiquitous real-time location system.
Our goal is to develop a 2-D localization system based on
more devices.
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