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Abstract—With the widespread application of machine
learning-based graph classification models in fields such as
biology and economics, there has been a growing number of at-
tacks aimed at perturbing classification results. Although current
defense methods, such as randomized smoothing, have achieved
some success, their practical applicability remains limited due to
the need to modify classification models to ensure accuracy.

In this paper, we propose a novel defense method—GRACED,
which provides theoretical guarantees for the accuracy and
robustness of graph classification without requiring knowledge
of the attacker’s capabilities or the classification model. The key
idea behind our method is to leverage the denoising ability of
feature diffusion models for adversarial data purification. We
then demonstrate that this randomized purification approach
can ensure certified robustness under specific attack budgets.
Extensive experiments confirm our theoretical findings and show
that graph classifiers using GRACED significantly outperform
state-of-the-art classifiers. For instance, the accuracy on MUTAG
improved by 11%, and the best results on IMDB showed a 14%
increase.

Index Terms—graph classification, adversarial attack, diffusion
model

I. INTRODUCTION

Graph Neural Network (GNN)-based Graph classifiers [1]
have been shown to be vulnerable to subtle modifications of
the graph, which compromises its robustness when applied
to tasks such as protein property analysis [2]. For example,
perturbations to non-essential molecular structures can lead to
incorrect property predictions [3].

Such adversarial attacks on graph classifiers have led to
the development of various defense methods. Existing de-
fenses [4]–[7] either offer empirical protection but are vulnera-
ble to new attacks or are incompatible with black-box models.
In contrast, Randomized Smoothing (RS) assumes black-
box attacks, focuses on adversary capabilities, and provides
robustness certificates through data randomizing and sampling,
making it versatile across model architectures. However, RS
methods require retraining or fine-tuning as standard classifiers
cannot handle noisy samples, limiting their suitability for
diverse adversaries and black-box models. Diffusion mod-
els [8]–[10], leveraging generative capabilities of large models,
is capable of handling noisy data but struggle to preserve
structural stability, which undermines classification perfor-
mance when used for adversarial defense. While both diffusion
models and RS can somewhat enhance model robustness, they
face practical limitations, including a lack of plug-and-play
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Fig. 1. GRACED illusatration: An edited toxic chemical might be misclas-
sified as nontoxic, while such an adversarial graph with GRACED purification
can be correctly identified with a guarantee.

capability, reliance on additional attacker information, and
suboptimal performance on graph classification tasks.

To address these challenges, we propose GRACED, a certi-
fied defense ensuring high-accuracy and guatanteed robustness
for black-box graph classifiers against unknown attacks with-
out requiring knowledge about attacker or model. GRACED
utilizes the denoising ability of diffusion models [8] to purify
the adversarial graph before obtaining predictions with any
GNN models.

Adapting diffusion models for adversarial defense is chal-
lenging due to: i) Difficulty in constraining the stochasticity
in the forward and reverse processes of diffusion model while
ensuring graph structure and node feature stability. ii) The
challenge of purifying implicit graph features embedded by
various graph classifier using only the explicit structure and
attributes, capturing the unique contribution of each.

Solutions: i) We design a marginal-distribution based noise
addition and removal process that maintainsgraph structural
integrity and node attribute features, with fine-grained noise
scales to adapt to attackers with different budgets. ii) We
developed a step-wise diffusion and denoising algorithm based
on the multiplication theorem, independently analyzing the
impact of structure and attribute on the features.

The main contributions in GRACED summarize as follows:

• We present GRACED - a plug-and-play solution to guar-
antee GRAph classification with CErtifiable robustness
via a Diffusion model, effectively tackling the verifiable
robustness of black-box graph classification models.

• We design a graph diffusion model based on D3PM [8]
to purify the adversarial graph into a benign graph. We
elaborate on the forward diffusion process and the reverse



denoising process of the diffusion model to preserve the
structure stability of the graph.

• We have validated the efficacy of our approach through
comprehensive testing on real-world datasets. The ac-
curacy improves 11% on MUATG and 14% on IMDB
dataset compared to the state-of-the-art.

II. GRACED, A CERTIFIED GRAPH CLASSIFICATION
SOLUTION

In this section, we present GRACED, a plug-and-play
method providing robustness certification for arbitrary black
box graph classification models.

As illustrated in Fig. 2, GRECED is composed of GRAD, a
discrete diffusion model that purifies the graph feature while
preserving graph structure stability, and GRACE, a certificate
generator providing provable robustness through theoretical
proof.

A. GRACED Framework

The objective of GRACED is to guarantee the classification
result for arbitrary classifiers under different attacks. Given
a set of graphs G = {G}, a graph classifier like Graph
Isomorphism Network (GIN) [11] aims to predict a label for
the entire graph, i.e., to learn a function fθ : G → K with K
being the label set. Our work focuses on graphs with binary
entries in attribute matrix Xn×d and adjacent matrix An×n.

A well-trained graph classifier can be fooled by sam-
ples with imperceptible perturbations, i.e., adversarial exam-
ples [12]–[14]. Our threat model considers adversarial graph
example G̃ = (X̃, Ã) with attributive and structural perturba-
tion δ = (δX , δA). We focus solely on the attack budget and
treat the attack strategy as a black box.

Specifically, an attacker’s budget ∆ is to limit the magnitude
of changes in X and A:

∆ = {(δX , δA) :||δ+X ||0 ≤ ∆+
X , ||δ−X ||0 ≤ ∆−

X ,

||δ+A ||0 ≤ ∆+
A, ||δ

−
A ||0 ≤ ∆−

A}. (1)

∆X specifies a ℓ0-ball around X containing all the samples
with ∆+

X additional attributes and ∆−
X fewer attributes, while

∆A constraints the structural perturbation with ∆+
A injected

edges and ∆−
A deleted edges. The perturbation on two vari-

ables is equivalent to bit flipping on the attribute and adjacency
matrix.

To provide certified defense under the attack budget, the
common approach is to randomly perturb the input and report
the output corresponding to the ”majority vote” on the ran-
domized sample, i.e. Randomized Smoothing (RS) [15], [16].

Considering a graph classifier fθ(G), RS predicts the label
with a smoothed base classifier, noted as gθ(G):

gθ(G) := argy max Pr
G̃∼ϕ(G)

[fθ∗(G̃) = y], (2)

where ϕ(·) returns a randomized version of the input graph.
To preserve the sparsity in graph data, Ref. [15] proposed a
randomization scheme ϕ(Z) with Z ∈ {X,A}:

Pr(ϕ(Z) ̸= Z) = p
(1−z)
+ pz−. (3)

Such randomization is to apply data-dependent Bernoulli noise
ϵZ ∼ Ber(p = p

(1−z)
+ pz−) on variable Z with p = p− if z = 1

and p = p+ if z = 0. However, vanilla RS in [15] needs robust
training on white box models with data randomized with ϕ(G),
since standard GNNs are not trained for randomized data.

By contrast, GRACED decouples the classifier from the
randomization methods, making it applicable to black box
GNNs. The key idea is to instantiate the Randomized Smooth-
ing framework with a denoiser and a black box classifier.
Specifically, the fθ∗(G) in Eq. 2 can be paraphrased as:

fθ∗(G̃) := fθ(D(G̃)). (4)

D(G̃) is a graph denoiser based on the discrete diffusion model
which will be introduced in subsection II-B. The separation
of the classifier and randomized data allows GRACED to be
plug-and-play, providing certified defense.

B. GRAD, A Graph Diffusion Model

GRAD takes a graph G̃ with adversarial attributes X̃ and
structure Ã as input and purifies the graph feature to miti-
gate the impact of malicious data, providing denoised graph
Ḡ = (X̄, Ā) as output. We leverage the powerful denoising
capability of D3PM [8] to reconstruct graphs with complex
attributes and structures while preserving structure stability.

The forward process of GRAD adds data-dependent
Bernoulli noise on Z ∈ {X,A}, which is to ”transit” Z from
one state to the other, controlled by Qt as follow:

q(Zt|Z0) = Cat(Zt; p = Z0Q̄t), (5)

where Cat(·) denotes the categorical distribution, Qt =
q(Zt|Zt−1) is the categorical transition matrix and Q̄t =
Q1Q2 · · ·Qt.

Using standard diffusion notations, G0 = (X0, A0) is
sampled from original data distribution and βt = 1 − αt is
the noise schedule. The forward diffusion process on X and
A is controlled by transition matrix Qt:

QX
t = αtI+ βt1m

X, (6)

QA
t = αtI+ βt1m

A, (7)

where I is the identity matrix, 1 is the one-valued vector, mZ

is the empirical marginal distribution of of variable Z. As
we handle matrices with {0, 1} entries, the state transition of
D3PM is equivalent to bit-flipping. Diffused graph distribution
at timestamp (tx, ta) can be written as:

q(Xtx , Ata |X0, A0)

= Cat(Xtx , Ata ; pX = X0 ⊕ ϵXtx , pA = A0 ⊕ ϵAta),
(8)

where ϵZtz ∼ Ber(p = (β̄tzm1
Z)1−z(β̄tzm0

Z)z) for Z ∈
{X,A}. Here, β̄t = 1 − ᾱt and ᾱt =

∏t
τ=1 ατ . The

asynchronous noise ϵXtx and ϵAta set different noise granularity
for attributes and structures.

The reverse denoise process is to predict the noise on the
graphs at timestamp t. To estimate the joint distribution of
noises, denoising network ϵθ(Xtx , Ata , tx, ta) is employed to
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Fig. 2. Pipeline: GRACED purifies the adversarial node attributes and graph structure through GRAD and generates a robustness certificate by majority votes
via GRACE. G̃ is first randomized on X and A to get diffused graphs, then denoised separately, and finally classified by black box model.

minimize the expected gap between the predicted noise and
the actual noise:

EX0,A0,ϵXtx ,ϵ
A
ta

,tx,ta ||ϵθ(Xtx , Ata , tx, ta)− [ϵXtx , ϵ
A
ta ]||. (9)

The ϵθ(Xtx , Ata , tx, ta) in GRAD is composed of Multi-
Layer Perceptron attribute denoiser ϵXθ (Xtx , tx) and Message-
Passing Neural Network structure denoiser ϵAθ (Ata , ta|X̄0)
conditioned on reconstructed node attribute. Practically,
GRAD is trained with cross-entropy loss between the predicted
probabilities and actual variables:

Loss(p̄G, G) = ℓCE(p̄
X , X) + λℓCE(p̄

A, A), (10)

where p̄G = (p̄X , p̄A) satisfying p̄X = Xtx ⊕Pr(ϵXθ (Xtx , tx))
and p̄A = Ata ⊕ Pr(ϵAθ (Ata , ta|X̄0)). λ controls the relative
importance of structure over attributes.

C. GRACE, A Graph Certification

The provable defense is provided by a robustness certificate
which guarantees the prediction under a certain attack budget.
Let y∗ be the ground truth label of G, and G̃ is a randomized
version of G. Generating a certificate is to ensure that fθ(G̃) =
y∗. The robustness certificate is defined following previous
work [15], [17], [18]:

ρG,G̃(p, y
∗) = min

f̄θ:Pr(f̄θ(G)=y∗)=p
Pr(f̄θ(G̃) = y∗). (11)

Then ρG,G̃(p, y
∗) ≤ Pr(f̄θ(G̃) = y∗) is a lower bound of the

probability p of fθ(G̃) = y∗. Given an attack budget ∆, if it
satisfied:

min
G̃

ρG(p, y
∗) > max

G̃
Pr(f̄θ(G̃) = y ̸= y∗), (12)

where ||G̃−G||0 ≤ ∆, the predicted label is certifiably robust,
for the lower bound of the most likely class is higher than any
other classes.

The common approach for certification is to compute the
lower bound py∗(G) and upper bound py ̸=y∗(G) based on the
Clopper-Pearson Bernoulli confidence interval using Monte-
Carlo samples from G̃ ∈ G+∆ [15], [16].

Our key idea is to divide the graph space into disjoint
regions G =

⋃
i Ri, s.t.Ri ∩Rj = ∅ of satisfying Pr(ϕ(G) =

Y )/Pr(ϕ(G̃) = Y ) = ci such that we can apply the Neyman-
Pearson Lemma [19] to derive the lower bound of the most-
likely class. Given such partition of G, the certificate in
Eq. 11 is equivalent to the following Linear Program Problem
according to [17]:

min
f

fT r̃ s.t.fT r = p, 0 ≤ f ≤ 1, (13)

where f is the vector we are optimizing over, and probability
r is a vector where ri = Pr(ϕ(G̃) ∈ Ri). The solution can be
obtained by a greedy algorithm: sort the Ri such that c1 ≥
c2 ≥ · · · ≥ cI , then iteratively assign fi = 1 until the budget
is met.

Since we use the same threat model and randomization
scheme as in Sparse Smoothing [15], to derive the certificate,
the minor technicality required for GRACE is to map the
diffusion timestamp to the randomization parameter. To be
specific, for Z = {X,A}, the randomization scheme in Sparse
Smoothing is to add Bernoulli noise ϵZ ∼ Ber(p = p

(1−z)
+ pz−).

The diffusion process in GRAD is to add Bernoulli noise
ϵZtz ∼ Ber(p = (β̄tzm1

Z)1−z(β̄tzm0
Z)z). It is obvious that

p+ = β̄tzm1
Z and p− = β̄tzm0

Z .

III. EVALUATION

A. Experimental Setup

We utilize three bioinformatics graph datasets (MU-
TAG [20], NCI1 [21], PROTEINS [22]) and one social net-
work dataset (IMDB-BINARY [23]) for evaluation. Graphs
in bioinformatics datasets represent compounds or proteins,
with labels indicating chemical properties like mutagenicity.
In the IMDB dataset, each ego-network of an actor/actress is
classified into different movie genres. We use GIN [11] and
GraphSAGE [24] for graph classification.

Sparse Smoothing [15] proposed a data-dependent sparsity-
aware randomization method. Bernoulli noise is added to A
and X for randomization in [18]. Hierarchical Smoothing [25]
add noise to randomly selected nodes. Both Bernoulli Smooth-
ing and Hierarchical Smoothing are designed to defend against
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Fig. 3. Clean accuracy gap: Each heatmap shows the clean accuracy gap
between GRACED and Sparse Smoothing per dataset, with noise scales for
attributes and adjacent matrices on the horizontal and vertical axes.

singular perturbation on attributes or structures, so we make
adaptations to extend their scopes.

During the training of GRAD, 10% graphs are used for
testing while the remaining are split into 90% and 10% for
training and validation. We use the same split to train the
GNN in both standard and robust training. We set Tx = Ta =
500 and λ = 5 for GRAD. When testing the GRACED and
Sparse Smoothing, we sample 1000 randomized graphs for
classification.

B. Experimental Results

Like [15], [18], we report the clean accuracy and certified
accuracy. Naı̈veϕ and GRACED represent the benign classifier
under attack, and our model, respectively. Sparse, Hier. and
Ber. represent three different RS method.

When using GraphSAGE for classification, GRACED im-
proves by 8% and 7% compared to Naı̈veϕ and Sparse on
the NCI1 dataset, respectively. On IMDB, the improvements
relative to Naı̈veϕ and Sparse are 20% and 10% (under joint
perturbation). Table I shows the clean accuracy of different
models under singular and joint perturbation on X and A
classified by GIN.

TABLE I
CLEAN ACCURACY UNDER DIFFERENT PERTURBATION

Type MUTAG NCI1 PROTEINS IMDB

Attr.& Adj.

Naı̈veϕ 0.58 0.49 0.54 0.52
Sparse 0.68 0.60 0.55 0.49
Hier.A 0.52 0.64 0.63 0.48
Ber.X 0.74 0.55 0.67 0.51

GRACED 0.79 0.64 0.67 0.63

Attr.

Naı̈veϕ 0.53 0.48 0.53 0.51
Sparse 0.68 0.32 0.49 0.66
Hier. 0.73 0.51 0.41 0.57

GRACED 0.78 0.59 0.61 0.63

Adj.

Naı̈veϕ 0.53 0.46 0.53 0.54
Sparse 0.63 0.43 0.61 0.66

Ber. 0.63 0.55 0.51 0.53
GRACED 0.78 0.62 0.61 0.75

Note: The randomization parameters are set as the noise scale when diffusion
timestamp t = 300. Hier.A denotes adaptation of hierarchical smoothing with
ϵZ set the same as sparse method and corruption ratio p = 0.8. Ber.X is the
adaptation of Bernoulli smoothing with ϵZ = Ber(p = 1

2
(p+ + p−)).

GRACED outperforms or matches baselines without costly
robustness training. Attacked Naive models perform near ran-

Singular certificate for attribute Singular certificate for adjacent

Joint certificate with ΔX = (0,0)ΔX = (0,0)Joint certificate with ΔA = (0,0)ΔA = (0,0)

Fig. 4. Certificate: The top row depicts singular certificates, and the
bottom shows joint perturbation defense. Blue and purple heatmaps represent
certificates for node attributes and sctructure, respectively.

dom guessing, highlighting standard models’ inability to clas-
sify randomized samples, while GRAD effectively denoises
data.

Fig. 3 shows the clean accuracy gap between GRACED and
Sparse Smoothing on MUTAG and IMDB-BINARY, evaluated
using GIN. The numbers on the axis represent the Bernoulli
noise parameters Ber(p = p

(1−z)
+ pz−), abbreviated as p−/p+.

From low to high, the noise scales correspond to the diffusion
timestamps {0, 100, 200, 300, 350}.

The gap between GRACED and the Sparse method is
positive across various randomized parameter settings. On
the MUTAG dataset, GRACED achieves consistently superior
accuracy with an average improvement of 11.79%, while on
the IMDB dataset, the average accuracy improvement is 7.84%

Fig. 4 shows the certified accuracy of GIN on the MUTAG
dataset. The singular certificates are derived using the ran-
domization scheme ϵX = 0.57/0.09 and ϵA = 0.58/0.08. The
joint certificate uses the same setting for joint randomization.
In certified accuracy experiments,we sample n0 = 10 graphs
to estimate the class likelihood and n1 = 10000 graphs to
derive robustness certificates.

Experimental results show our method certifies large at-
tack budgets and achieves high provable accuracy. The axes
represent attack deletion (∆−) and additin (∆+) for at-
tributes/edges. With p− > p+,certified ∆− exceeds ∆+.

IV. CONCLUSION

In this paper, we present a plug-and-play defense against
graph modification attacks, providing robustness guarantees
for any black box graph classifier. We leverage the denoising
capability of the discrete diffusion model to extract the core
features of different graph types. The robustness certificate is
then derived through the theoretical proof to ensure the pre-
diction under different attack budgets. The evaluation results
demonstrate that GRACED shows an accuracy improvement
over the state-of-the-art on multiple datasets.
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