

2025 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP 2025)

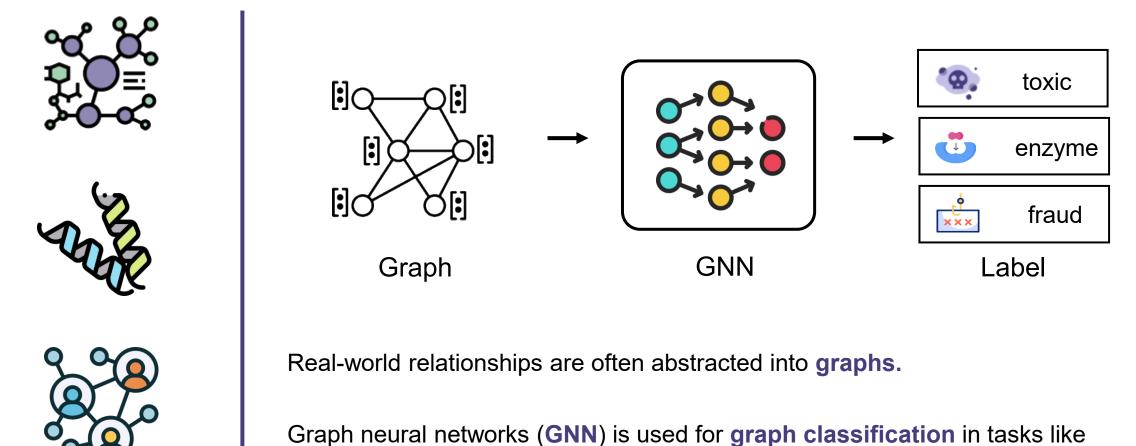
April 06 - 11, 2025 Hyderabad, India

GRACED: A Plug-and-Play Solution for Certifiable Graph Classification

Xiaoyu Liang (BUAA)

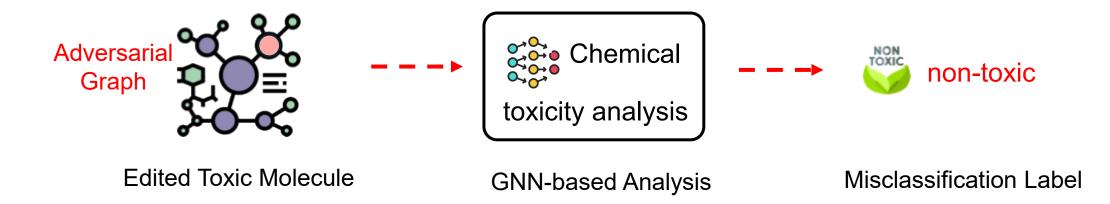
Haohua Du, He Lu, Fei Shang

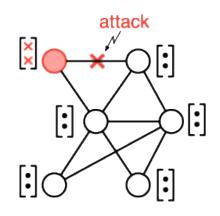
Background: GNN for Graph Classification



toxicity prediction, protein function prediction, and fraud detection.

Background: Adversarial Attack on GNN

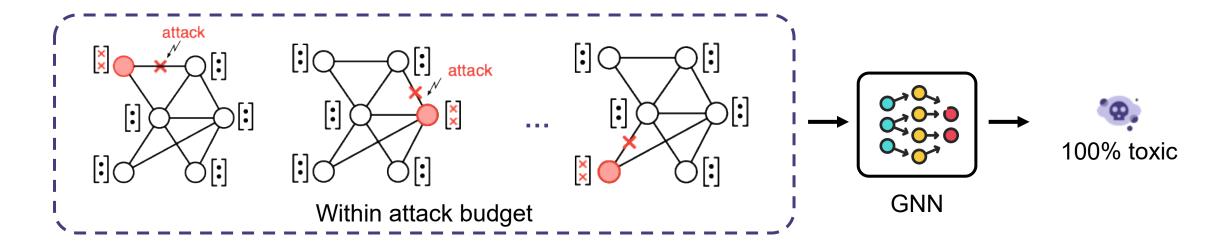




Adversarial Attack

Unnoticeable perturbations on **graph structure** and **node attributes** could lead to misclassification of graph by high-accuracy GNN.

Background: Robustness Certificate



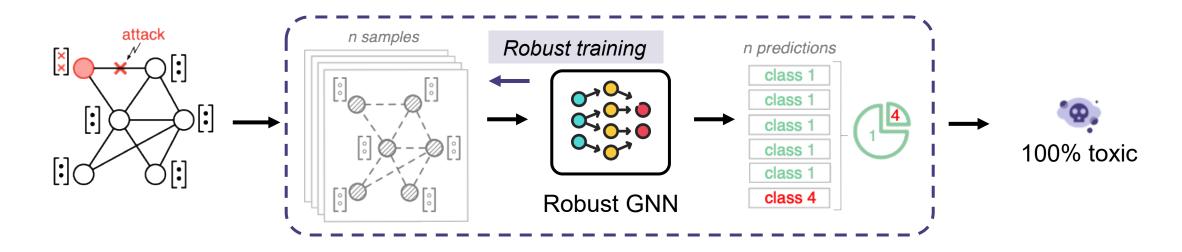
Certification

Given the input graph G = (X, A), base classifier f_{θ} and attack budget (magnitude of perturbation) Δ : guarantee that for all $\delta \in \Delta$, $f_{\theta}(G + \delta) = f_{\theta}(G)$.

Threat Model

 $\Delta = (\Delta_X, \Delta_A)$ specifies a ℓ_0 -ball around input *G*, which is to limit the magnitude of changes in *X* and *A*.

Background: Randomized Smoothing



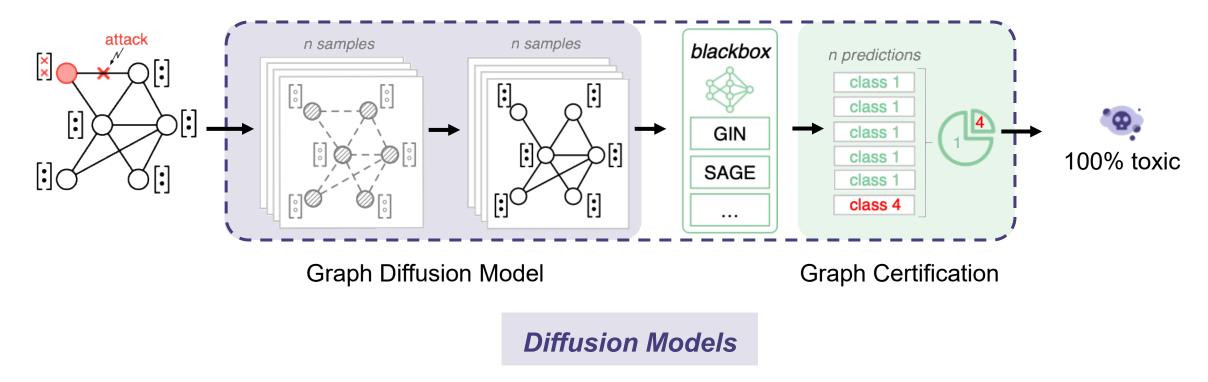
• Randomized Smoothing (Cohen 2019, Bojchevski 2020)

RS-based method predicts the label with a smoothed base classifier, noted as $g_{\theta}(G)$:

$$g_{\theta}(G)$$
: = $\arg_{y} \max_{\tilde{G} \sim \phi(G)} [f_{\theta^*}(\tilde{G}) = y]$, where $\phi(G)$ is randomization scheme

RS methods require retraining or fine-tuning as *f* cannot handle noisy samples i) Retraining for diverse adversaries; ii) accuracy drop on clean samples.

How to provide plug-and-play certified defense for GNN?

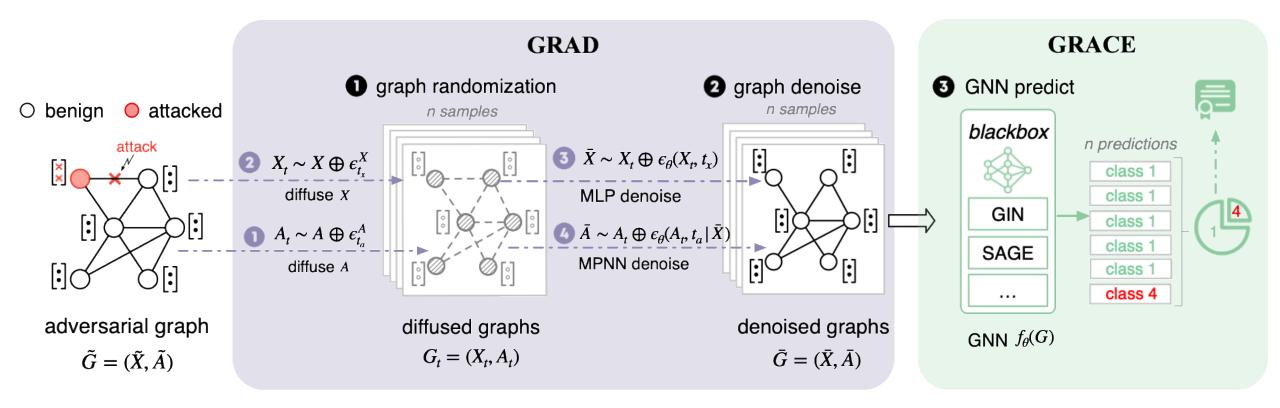


GRACED: Denoised Smoothing

$$f_{\theta^*}(\tilde{G}) := f_{\theta}(\mathcal{D}(\tilde{G}))$$

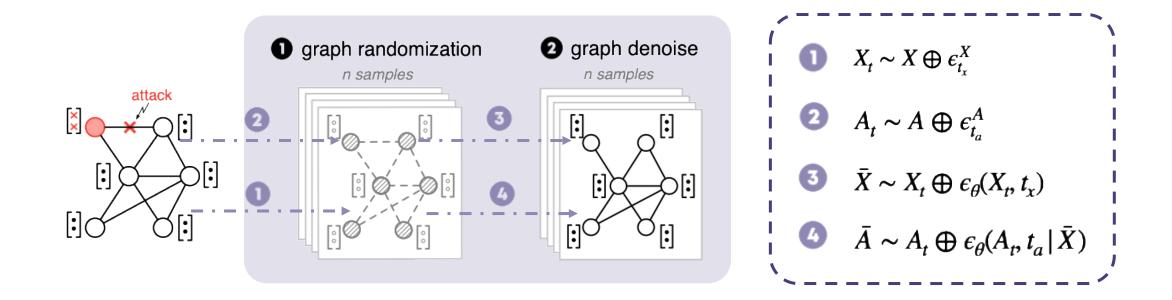
 \mathcal{D} is a diffusion-based denoiser, which purify the adversarial graph before obtain certified classification with black-box GNN.

GRACED Framework



GRACED - a plug-and-play solution to guarantee **GRA**ph classification with **CE**rtifiable robustness via a Diffusion model

GRAD: A Graph Diffusion Model



• Step 1: graph randomization

Forward process of diffusion model adds datadependent Bernoulli noise on *X* and *A*.

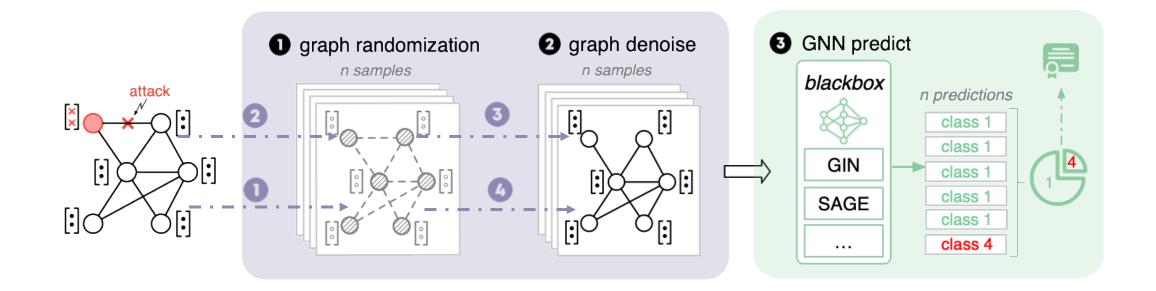
diffusion = *randomization*

• Step 2: graph denoise

Reverse process of diffusion model removes noise from *X* and *A* to reconstruct data.

reverse = purification

GRACE: A Graph Certification



• Step 3: GNN predict

Use black-box standard trained GNN to classify denoised graphs, providing robustness certificate with randomized smoothing method.

diffusion timestep = randomization parameter

Evaluation

TABLE ICLEAN ACCURACY UNDER DIFFERENT PERTURBATION

Clean accuracy

- Outperforming sparse smoothing (Bojchevski *et al.* 2020) on joint and singular perturbation.
- Outperforming hierarchical smoothing (Scholten *et al.* 2024) on singular perturbation on *X*.
- Outperforming Bernoulli smoothing (Wang *et al.* 2021) on singular perturbation on *A*.

Туре		MUTAG	NCI1	PROTEINS	IMDB
Attr.& Adj.	Naïve $^{\phi}$	0.58	0.49	0.54	0.52
	Sparse	0.68	0.60	0.55	0.49
	Hier. ^A	0.52	0.64	0.63	0.48
	Ber. X	0.74	0.55	0.67	0.51
	GRACED	0.79	0.64	0.67	0.63
Attr.	Naïve $^{\phi}$	0.53	0.48	0.53	0.51
	Sparse	0.68	0.32	0.49	0.66
	Hier.	0.73	0.51	0.41	0.57
	GRACED	0.78	0.59	0.61	0.63
Adj.	Naïve $^{\phi}$	0.53	0.46	0.53	0.54
	Sparse	0.63	0.43	0.61	0.66
	Ber.	0.63	0.55	0.51	0.53
	GRACED	0.78	0.62	0.61	0.75

Note: The randomization parameters are set as the noise scale when diffusion timestamp t = 300. Hier.^A denotes adaptation of hierarchical smoothing with ϵ^Z set the same as sparse method and corruption ratio p = 0.8. Ber.^X is the adaptation of Bernoulli smoothing with $\epsilon^Z = \text{Ber}(p = \frac{1}{2}(p^+ + p^-))$.

Evaluation

Clean accuracy

 Outperforming sparse smoothing (Bojchevski *et al.* 2020) under different randomization setting on bioinformatics graph dataset
MUTAG and social network
dataset IMDB-BINARY.

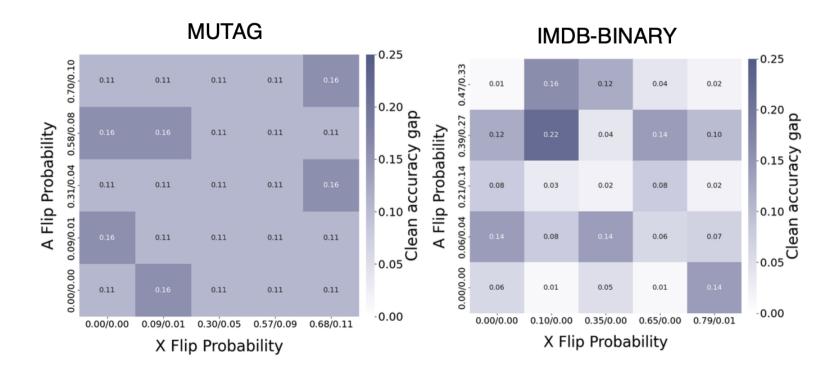


Fig. 3. Clean accuracy gap: Each heatmap shows the clean accuracy gap between GRACED and Sparse Smoothing per dataset, with noise scales for attributes and adjacent matrices on the horizontal and vertical axes.

Evaluation

Certified accuracy

Achieving high certified accuracy on large attack budget, for both singular and joint perturbation scenario.

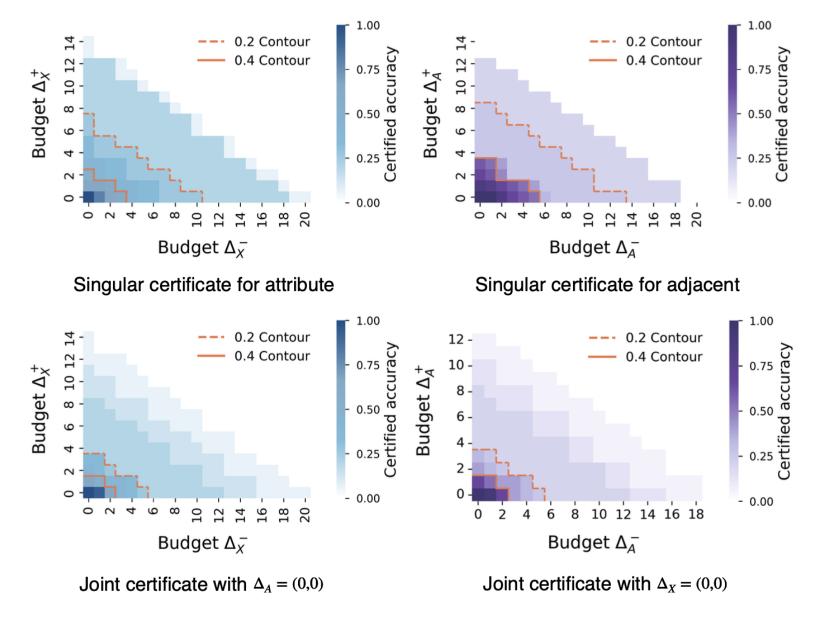


Fig. 4. **Certificate**: The top row depicts singular certificates, and the bottom shows joint perturbation defense. Blue and purple heatmaps represent certificates for node attributes and sctructure, respectively.

Summary

Plug-and-play Certification

We present GRACED to effectively tackling the verifiable robustness of black-box graph classification models in a plug-and-play style.

Graph Diffusion Model

We design GRAD, a graph diffusion based on D3PM (Austin *et al.* 2021) to purify the adversarial graph into a benign graph, preserving the structure stability of the graph in the process.

• High Accuracy

We have validated the efficacy of our approach through comprehensive testing on real-world datasets, showing accuracy improvement of approximate 10% over randomized smoothing.

2025 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP 2025)

April 06 - 11, 2025 Hyderabad, India

Thank you for your attention.

Xiaoyu Liang (BUAA)