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Abstract— Recently, Wi-Fi based sensing technology has been
widely studied to provide more convenient services for humans.
Although previous arts claim to achieve diverse fine-grained
sensing using Wi-Fi signals, most of them assume that the
data such as Channel State Information (CSI) used to achieve
the sensing tasks can be sufficiently collected. However, in
practical, due to the competitive nature of Wi-Fi and the
frequent intermittent traffic, Wi-Fi based sensing applications
often encounter problems of irregular intervals and insufficient
sampling. Therefore, in this paper, we propose a Wi-Fi signal
sparse recovery system (WiSR) that aims to recover sufficient and
uniform sensing data from unevenly spaced and under-sampled
CSI. Inspired by the success of image and audio restoration, we
improve the Generative Adversarial Network (GAN) to recover
Wi-Fi CSI. However, the direct application of GAN technologies
for image and audio to CSI is not effective due to the difference
in data representation. First, to avoid spectral impairments after
conversion from time domain to frequency domain, we directly
operate on the original time series CSI waveforms, thus being
able to recover continuous channel variations from intermittent
sparse samples. Second, to enhance the above recovery process,
we utilize two novel denoising methods to obtain clean CSI,
and introduce restrictions in the time and frequency domains
to optimize low-level features and high-frequency information,
respectively. Real-world experiments show that WiSR can ac-
curately recover CSI, even at a rate of 10 packets per second.
Through practical applications of gait recognition and gesture
recognition, WiSR significantly improves accuracy compared to
traditional linear interpolation and cubic interpolation.

Index Terms—Channel State Information, Signal Processing,
Generative Adversarial Network, Wi-Fi Sensing

I. INTRODUCTION

Wi-Fi infrastructure has been widely deployed indoors for
internet connectivity, establishing it as one of the most pivotal
wireless technologies. Through the analysis of wireless signal
patterns, Wi-Fi has demonstrated considerable potential for
device-free human sensing tasks, including activity recognition
[1], [2], gesture recognition [3]–[6], and gait recognition [7]–
[9]. Despite the unique advantages brought over by Wi-Fi
sensing, such as low cost, ubiquitous infrastructure, and non-
intrusiveness, a number of problems and challenges are yet to
be solved to make the sensing applications commercially vi-
able and ubiquitous. In this paper, we focus on two issues that
affect the reliability and usability of Channel State Information
(CSI) for high-performance Wi-Fi sensing:

• Low Sampling. CSI can only be estimated during data
communication. Consequently, when data communication
is inactive, the sampling rate of CSI significantly de-
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Fig. 1. In practical, Wi-Fi based sensing suffers from irregular intervals
and inadequate sampling which significantly degrades performance,
our scheme can recover sufficient and uniform CSI, thus maintaining
accuracy for a variety of applications.

creases, rendering it insufficient for higher-level appli-
cations.

• Irregular Intervals. The contention-based multi-access
characteristic of Wi-Fi often leads to significant varia-
tions in the time intervals between adjacent frames. This
results in an irregular frame arrival rate for each link, as
illustrated in Fig.1. Furthermore, data caching and rate
control by upper-layer protocols intensify this irregularity.

CSI contained in each frame is vital for Wi-Fi sensing.
An inconsistent frame rate translates to a fluctuating sampling
rate, potentially limiting the effectiveness of Wi-Fi sensing. It’s
also crucial to acknowledge that CSI data is high-dimensional.
Maintaining a high frame rate for real-time applications can
place considerable strain on communication, potentially dis-
rupting the normal functioning of Wi-Fi.

Interpolation is a straightforward technique that can address
low and irregular packet rates [10]. Nevertheless, this method
only fills data gaps using local information to ensure a uniform
distribution in the time domain. It may not be effective
when parts of the signal are missing. Currently, Generative
Adversarial Networks (GANs) have gained popularity in tasks
such as image repair and super-resolution [11], [12]. GANs
utilize a learned data distribution to fill in missing pixels.
Previous studies [13]–[15] have primarily utilized the data
generation capabilities of GANs to synthesize virtual samples
in target domains, facilitating domain adaptation. In this paper,
we introduce WiSR, a method that employs global information
to restore CSI data. However, several challenges must be
overcome to successfully implement this system and achieve



accurate and reliable CSI recovery.
The first challenge is how to effectively transform the

WiFi signal data for efficient deep learning processing.
The signal data captured by WiFi equipment differs signif-
icantly from the image data. Most works [7], [8] converted
the radio frequency (RF) signal data from time domain to
frequency domain and fed the frequency spectrum image into
the machine learning models for processing. However, crucial
sensing information is lost in converting a signal from the
time domain to the frequency domain. So we introduce a new
generative model operating directly on the raw CSI waveform
to recover continuous channel variation from the intermittently
sparse samples.

In contrast to image and audio, noise comes in many
forms in the raw CSI that a commercial WiFi device
collects. The presence of noise can cause signal distortion,
decrease the signal-to-noise ratio, and impair the reliability of
the signal. In the process of signal recovery, noise is treated
as part of the signal itself, resulting in errors between the
recovered signal and the original signal. Therefore, we apply
two noise mitigation techniques to minimize the effects of
noise and enhance the quality and reliability of the recovered
signal.

Moreover, signal inpainting with significant gaps
presents a formidable challenge. In the context of CSI
traffic, such gaps can result in substantial information loss,
rendering algorithms designed for shorter intervals ineffective.
The solution to this problem involves exploring the generation
of missing frequencies within the sparse part. We propose a
novel loss function in the frequency domain, achieved by cal-
culating the frequency component using the Short Fast Fourier
Transform (STFT). This new loss function directly references
the ground truth in both the temporal and frequency domains,
thereby enhancing the precision of time-series sampling and
providing a balanced focus on the spectral details of the CSI
data.

Our key contributions can be summarized as follows:

• To avoid the loss of Wi-Fi signals in converting a signal
from the time domain to the frequency domain, we
introduce a new recovering model operating directly on
the raw CSI waveform to recover continuous channel
variation from the intermittently sparse samples.

• Moreover, by employing two novel denoising methods
and applying loss function both on temporal and fre-
quency domains, we excels in recovering high-quality
time-series signals.

• We implemented WiSR using the Gait dataset collected
by ourselves and the public Widar3.0 [5]. We evaluated
the system’s performance through extensive experiments.
A comparison with two interpolation methods revealed
WiSR’s superior performance in recovering Wi-Fi signals
under varying packet rates.

The remainder of the paper is organized as follows: Section
II introduces the related works. Section III details the sparse
system overview. The denoising strategy and sparse recovering

network are introduced in Section IV and Section V, respec-
tively. The experiments are provided in Section VI. Finally,
we conclude our work in Section VII.

II. RELATED WORK

In this section, we discuss the related work in large-scale
Wi-Fi sensing systems: GAN-based WiFi sensing techniques
and existing sparse recovery algorithm for WiFi-Sensing.

A. GAN-based WiFi Sensing Techniques

To the best of our knowledge, previous works have primarily
used the GAN model’s data generation ability to synthesize
virtual samples in target domains and facilitate domain adapta-
tion. CsiGAN [13] proposed a semi-supervised GAN network
for producing complement fake data samples and improving
activity recognition accuracy when performed by new users.
WiGAN [14] aimed to increase both WiFi data capacity and
diversity. DMNet [16] and GNG [15] also used GANs to
generate more samples and improve activity recognition.

B. Sparse Recovery for WiFi Sensing

SenCom [10] uses a fitting resampling scheme to solve
the problem of uneven Wi-Fi transmission and injects active
detection packets to improve sampling when Wi-Fi traffic is in-
sufficient. Muse-Fi [17] proposes a sparse recovery algorithm
applying to the spectrum of the signal, which divides the signal
into sparse and non-sparse parts and uses an autoencoder (AE)
based on Time Convolutional Network (TCN) to recover the
sparse parts. WiImg [18] converts the CSI samples into images
and improves the GANs for CSI image inpainting, relaxing the
requirement of a high sample rate in sensing.

III. SYSTEM OVERVIEW

In this paper, we introduce a new generative model operat-
ing directly on the raw CSI waveform to recover continuous
channel variation from the intermittently sparse samples due
to realistic traffic. Fig.2 illustrates the overall structure of the
proposed system.

Specifically, we first apply principal component analysis
(PCA) along sub-carrier dimension and AGC removal to mini-
mize the effects of noise and enhance the quality and reliability
of the recovered signal (Section IV-A and Section IV-B).
Then, To keep a balance between computational resources
and contextual information, original time series CSI data is
divided into 2-second fragments. And each signal sequence
from the dataset is either interpolated or downsampled to a
resampling frequency ftarget (Section IV-C). After denosing
and resampling, CSI data is inputted into a sparse recovery
model to generate the sparse component (Section V). This
output, after recovering, can be further processed (e.g. time-
frequency analysis) to recognize the gait or gesture of the
subject.
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Fig. 2. Overview of WiSR: consist of data collection, data preprocessing, sparse recovery and applications such as gesture and gait recognition.
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Fig. 3. Illustration of PCA denoising along sub-carrier dimension.
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(a) Illustration of AGC noise.
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(b) CSI after AGC removal.

Fig. 4. Illustration of AGC noise and removal.
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Fig. 5. Comparison between different denoising methods in frequency domain. From left to right: the original signal, processing signal after PCA
denoising, wavelet denoising, and median filtering, respectively.

IV. DATA PREPROCESSING

A. PCA Denoising along Sub-carrier Dimension

When the target is far away from the transceiver or the
walking direction is close to parallel to the propagation path,
the signal pattern may be overwhelmed by the noise. We
observe that using PCA denoising at the subcarrier dimension
and extracting the first principal component can better remove
environmental noise while preserving the detailed features of
the signal as much as possible. So we transpose the CSI
matrix to represent the reflection paths of all sub-carriers in the
environment over a period of time. We keep the first principal
component as motion related and treat the others as unrelated
components representing the ambient noise. As a result, we
can remove the ambient noise by selecting the eigenvector
corresponding to the maximum variance to reconstruct the
signals.

To demonstrate the effectiveness of the PCA denoising algo-
rithm along the sub-carrier dimension, we plotted the effects of
different denoising methods on the signal, including time and
frequency domains. The results are shown in Fig.5. In the time-
frequency spectrum of PCA denoising and wavelet threshold
denoising, the noise regions are significantly attenuated, and
the details of the signal are well-preserved. Median filtering
reduces the noise to some extent, but the preservation of signal
details is not as effective as PCA and wavelet denoising,
especially for high frequencies. Compared to wavelet threshold
denoising, PCA denoising allows for clear separation between
the signal and noise areas in spectrum, which is important to
the restoration of frequency domain characteristics of signals.

B. AGC Removal

After removing the environmental noise, we also need to
remove the influence of AGC noise. Previous schemes using
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Fig. 6. Architecture of generator and discriminator network for signal recovery.

the ratio of two antennas can effectively remove AGC noise
[19]. In this paper, to completely preserve the distribution
of CSI data, we do not use the ratio method. According to
our observation, the noise caused by AGC is uncertain and
sparse points around the dynamic signal in the time dimension
[20], so we can filter out the noise caused by AGC according
to the sparse density distribution. Specifically, we utilize the
DBSCAN spatial clustering method to cluster AGC-related
points according to their sparse distribution density and retain
only the cluster with the largest number of scatter points [21],
and the results are shown in Fig.4.

C. Data Segmentation and Resampling

Our recovering models directly take masked raw waveforms
as input and generate recovered waveforms as outputs. Longer
sequences provide more contextual information, which helps
the model capture longer temporal dependencies. However,
it increases computational demands, including memory and
computation time, which impact training and inference effi-
ciency. Additionally, longer input data can present challenges
in gradient propagation and optimization. Hence, we slice the
original time series CSI data into 2-second fragments, striking
a balance between input data length, computational resources,
and model requirements.

Each signal sequence from the dataset is either interpolated
or down sampled to a target frequency ftarget, ensuring
uniformity in the model’s input length. The frequency ftarget
is empirically specified in different applications. For gesture
and gait recognition, we set ftarget to 1000Hz, which is
commonly used in previous work [3], [4], [7].

V. SPARSE RECOVERY

In this paper, we propose a GAN-based model operating
directly on the raw CSI waveform to recover continuous
channel variation Yt from the intermittently sparse samples
Xt due to realistic traffic.

We take an input time series {Xt | t = 1 . . . n} drawn
from the CSI of specific antenna pair with a mask {Mt | t =
i . . . j, 1 < i < j < n} as input, where t is the sampling time
and Xt is the amplitude of a corresponding CSI sample. In
order to utilize spatial information, we use multiple subcarrier
data as channel inputs. The masked samples are set to be zeros.
The model will recover the masked samples and generate an
evenly and densely sampled multi-channel sequence {Yt | t =
1 . . . n}. The goal is to minimize the loss between Yt and Xt.

In training, Yt is a raw CSI signal with a high sampling
rate, and Xt is randomly sampled from Yt through a specific
strategy. After segmentation and re-sampling, Xt has the same
dimension of Yt (i.e. T × N , where T is the length of CSI
time series and N represents the number of sub-carriers).

Our ultimate goal is to train a generating function G that
estimates for a given input low sampling and irregular signals,
its corresponding high sampling and regular counterpart. To
achieve this, we train a generator network as a feed-forward
Convolutional Neural Network (CNN) and define a discrimi-
nator network D.

A. Generator

Considering the advantages of CNN in extracting high-
dimensional feature information, a CNN model is designed to
achieve model generation. The architecture of the generator is
shown in Fig.6. At the core of our very deep generator network



G are B residual blocks with identical layout. Inspired by
SRGAN [22], we use two convolutional layers with small 9×9
kernels and 64 feature maps, followed by batch-normalization
layers and ParametricReLU as the activation function.

B. Discriminator

To discriminate real signals from generated samples, we
train a discriminator network. The architecture is shown in
Fig.6. We follow the architectural guidelines summarized by
Radford et al. [23], use LeakyReLU activation and avoid max-
pooling throughout the network. It contains four downsample
blocks and four upsample blocks. The resulting feature maps
are followed by an average pooling layer and a final sigmoid
activation function to obtain a probability for each signal point
classification.

C. Loss Function

The definition of loss function LGAN is critical for the
performance of our network. We design a loss function for
generator that assesses a solution with respect to Wi-Fi signal-
relevant characteristics. We formulate the loss as the weighted
sum of a temporal domain loss Lt and a frequency domain
loss Lf .

Loss on Temporal Domain. The mean-squared error
(MSE) focusing on low-level features is the most widely used
optimization target for image and audio inpainting models. We
apply it on the temporal domain:

Lt = Et

[∣∣∣Ŷt − Yt

∣∣∣2] , (1)

Loss on Frequency Domain. Aside from loss in temporal
domain, we propose a loss function for frequency domain to
restore high-frequency information in sparse part. The key
to sparse recovery is the exploration of generating missing
frequencies from low to high frequencies. Compared to the
spatial domain, specific frequencies can be clearly separated
in the frequency domain. In addition, frequency components
can provide global information about signals. We transform
the real and recovered waveforms into frequency domains with
STFT. The L1-loss of spectrum magnitude difference between
recovering and ground truth is averaged to produce the total
frequency loss Lf :

Lf =
1

UV

U∑
u=1

V∑
v=1

∣∣∣|Ẑ|u,v − |Z|u,v
∣∣∣ , (2)

where Ẑ and Z represent the spectrum magnitude of the
recovered and ground truth signal, respectively, and U and
V represent the number of time and frequency components,
respectively.

The theoretical advantage of using supervised loss in the
frequency domain is twofold. (1) Direct emphasis, particularly
on high-frequency information components that are lacking,
improves recovery in these locations. (2) Because of the
Fourier transform’s features, this loss gives global guidance
during training as opposed to a loss based on local signal
points in the spatial domain.

The overall loss function of our model:

LGAN = Lt + αLf + βLd, (3)

where α and β are hyperparameters and Ld is the Binary Cross
Entropy (BCE) loss function for the discriminator.

VI. EVALUATION

To demonstrate the effectiveness of our system, we conduct
extensive experiments to evaluate its performance with respect
to data restoration quality and the recognition accuracy of
tasks.

A. Datasets

In order to assess the performance of the method, we
specifically selected two types of applications that require high
sampling rates: gesture recognition and gait recognition.

Gait Dataset. We install the CSI Tool on two IPCs and
collect CSI using injection/monitoring mode with the sampling
rate set to 1000Hz [24]. Tx has one antenna, while Rx has
three antennas and is mounted on a tripod 0.5 m above
ground to detect human movement more effectively. As shown
in Fig.7, we deploy our experiments with a 6 m distance
between Tx and Rx. Each volunteer is asked to walk along
three trajectories and repeat them three times. We recruit three
volunteers of different heights and weights to record the CSI
of different people.

Widar3.0 [5]. We utilize the publicly available dataset
from Widar3.0. Widar3.0 is the largest WiFi sensing dataset
for gesture recognition, composed of 22 categories and 43K
samples. It is collected via the Intel 5300 Network Interface
Card (NIC) with 3 × 3 pairs of antennas in many distinct
environments.

B. The Target Sampling Rate

A higher sample rate requires more missing data to be
recovered but does not bring much improvement in sens-
ing performance. Besides, when too much data needs to be
recovered, the recovery capability of GANs decreases. As
Fig.8 shows, we observed that the sensing performance at the
sample rates of 200 Hz and 1000 Hz is very similar. Based on
our empirical studies, a 200 Hz sample rate is good enough
for most WiFi sensing applications such as hand gesture
recognition, gait identification, and activity recognition. So we
set ftarget to 200 Hz, striking a balance between computer
resources and recovering quality.

C. Implementation Details

To simulate the characteristics of intermittent data trans-
mission, we randomly mask out different proportions of the
original data. For instance, a 75% means the sampling rate is
about 50 Hz. Then, we follow the method in section IV to
preprocesing data.

All CSI data is preprocessed using Matlab R2023b on a
computer with an AMD-6800HS 3.2GHz CPU. The deep
learning model training and prediction are carried out on a
server with an NVIDIA 3090 graphics card running Python



TABLE I
RECOVERING PERFORMANCE ON THE GAIT AND WIDAR DATASETS.

Dataset Gait dataset Widar3.0 [5]

Proportion Method MAE(×10−2) MSE(×10−2) PSNR MAE(×10−2) MSE(×10−2) PSNR

50%
Linear interpolation 1.450±0.970 0.247±0.117 22.436±72.942 2.287±4.392 6.885±505.152 5.733±30.210
Cubic interpolation 2.834±0.445 0.304±0.029 13.213±52.547 7.853±1.355 2.805±0.783 9.804±19.612

Ours 1.373±0.635 0.150±0.028 24.930±22.815 0.475±0.075 0.591±0.345 11.246±12.338

75%
Linear interpolation 3.847±4.722 0.951±1.200 6.942±88.071 4.998±23.338 9.892±4.598 4.779±28.059
Cubic interpolation 5.404±1.770 0.818±0.139 3.003±61.327 12.123±5.000 8.099±4.405 -6.209±27.249

Ours 3.409±2.599 0.485±0.153 10.896±20.024 2.151±4.712 0.880±0.560 6.139±12.976

90%
Linear interpolation 7.067±11.607 2.220±5.640 -3.159±65.241 14.047±18.707 18.591±38.136 -12.148±78.552
Cubic interpolation 8.447±2.299 1.560±0.234 -3.975±111.248 23.415±19.770 9.544±10.255 -11.884±80.954

Ours 5.784±5.275 1.043±0.503 2.191±9.349 5.845±7.355 1.314±1.296 1.930±9.490

95%
Linear interpolation 26.910±94.598 13.085±5.154 -32.200±37.148 17.492±119.623 33.993±10.915 -23.080±76.761
Cubic interpolation 18.224±11.301 6.174±3.603 -17.556±315.106 40.266±42.697 24.196±18.376 -31.146±59.120

Ours 9.342±8.577 2.135±1.362 -5.918±13.782 8.039±14.970 3.334±12.300 -5.011±7.800

Tx

Trajectory 1

Rx

6 m

Sensing Area

Trajectory 2

Trajectory 3

Fig. 7. Experimental scenario of
Gait dataset.
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(b) Gesture recognition

Fig. 9. Comparison between our method and baselines in Gait dataset
and Widar3.0.

3.10 with CUDA 11.8 and Pytorch 2.0. We use the Adam
optimizer with a learning rate of 0.001, and the batch size is
fixed at 64. The ratio of training and testing splits is 8:2 for
all datasets using stratified sampling. The hyperparameter α
for the loss function is set to 10, and β is set to 1.

D. Baselines and Criteria

We compare our system to two common interpolation meth-
ods utilized in Wi-Fi sensing systems [10], [17]. We employ
the mean absolute error (MAE), MSE, and Peak Signal-to-
Noise Ratio (PSNR) computed over the segments to assess
performance.

E. Overall Performance

Overall recovering quality. Table I shows the evaluation
results for signal recovery on Gait dataset and Widar3.0
datasets. As the proportion of missing data increases, the
MSE and MAE values of all methods increase, while the
PSNR values decrease. On the Gait and Widar3.0 datasets, the
performance of the linear interpolation and cubic interpolation
methods are relatively low, with higher MSE and MAE values
and lower PSNR values regardless of the data ratio. In con-
trast, our method significantly improves recovery performance
compared to interpolation methods on both datasets.

Accuracy of different tasks. We also provide a quantitative
assessment of the proposed method in Wi-Fi sensing applica-

tions. We use CNN-LSTM as a classifier for evaluation. The
comparison results are shown in Fig.9. We can see that the
accuracy improvements of two interpolation methods are very
limited, while our system can achieve high accuracy compara-
ble to the accuracy of high-rate data. When the packet rate is
50 Hz, our system can achieve an accuracy of 85.34%, which
is only 5.7% lower than the performance of 200Hz. These
results demonstrate that our system can significantly improve
the sensing performance, outperforming the two interpolation
methods.

The impressive performance of our system can be attributed
to several key factors: 1) We directly recover the signal in the
time domain, reducing information loss in frequency domain
conversion and improving the quality of signal recovery; 2)
The PCA denoising method effectively removes noise, reduces
the impact of noise on feature extraction, and provides higher
signal-to-noise ratio for subsequent tasks. 3) Compared with
simple interpolation algorithms, our system extracts signal
features more comprehensively, ensuring a more stable quality
of the recovered signal.

F. Impact of Denoising Methods
To validate the efficacy of the denoising method, we com-

pare the recovery performance with different denoising meth-
ods on the Gait dataset. As depicted in Table. II, the denoising
method we introduce does contribute to significantly reducing
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Fig. 12. Example of CSI recovering in time and frequency domain.

TABLE II
IMPACT OF DENOISING METHODS.

MAE(×10−2) MSE(×10−2) PSNR

W/o denoising 10.934±3.409 3.712±0.510 1.672±86.335
Wavelet denoising 4.445±2.328 2.513±0.298 3.141±31.682
Median filtering 7.934±4.831 2.118±0.597 4.425±28.922
PCA denoising 3.445±2.292 0.563±0.145 9.891±23.223

recovery error. It is clear that denoising is important to obtain
accurate signal recovery. In addition, PCA denoising surpasses
the other two methods in terms of all metrics. The results show
that PCA denoising along sub-carriers successfully retains as
much signal information as feasible while reducing ambient
noise, hence improving recovery performance.

G. Impact of Loss Function

We also assess the efficacy of the generator network when it
operates without the two loss functions, Lf (WiSR-F) and Lt

(WiSR-T). We label WiSR with both loss functions as WiSR-TF.
The quantitative results are summarized in Table III. WiSR-
TF offers solutions with the highest MAE and MSE values.
However, it appears less convincing perceptually compared to
the results obtained with the loss function for the frequency
domain. This is because the frequency domain loss function
is more sensitive to the specific sensing task, as demonstrated
in Fig.10.

H. Impact of Recovering Window Size

We evaluate our system using various sizes of the recovery
window for the Gait dataset. We expand on the default window
size used in prior experiments, using both larger and smaller
sizes. The recognition accuracy for these various sizes is
depicted in Fig.11. Our findings reveal that accuracy generally
rises with an increase in window size. This is because longer
sequences offer additional contextual information, facilitating
the model’s ability to capture extended temporal dependen-
cies. However, this also escalates computational requirements,
including memory usage and computation time, thereby po-
tentially affecting training and inference efficiency.

I. Visualization of Sparse Recovery

In the low-frequency range of 0-40 Hz, our method suc-
cessfully recovers a significant portion of the input signal.

TABLE III
IMPACT OF LOSS FUNCTION.

MAE(×10−2) MSE(×10−2) PSNR

WiSR-T 2.934±0.831 0.237±0.129 6.672±4.335
WiSR-F 7.455±3.136 0.725±0.238 10.141±7.682

WiSR-TF 3.409±2.599 0.485±0.153 10.896±20.024

The waveform shows a clear resemblance to the original
signal, with most of the major features preserved. The spectro-
gram further verifies a robust reconstruction of the frequency
components, mirroring the same peaks and patterns as the
original signal. However, it is important to note that while our
system excels at recovering low-frequency information, it does
encounter challenges in the high-frequency range of 40-80 Hz.
In this region, the missing minor details and the relatively
poorer recovery effect are evident in both the waveform and
the spectrogram. These results highlight the strengths and
limitations of our approach. While we achieve remarkable
performance in reconstructing the low-frequency components,
further improvements are needed to enhance the recovery of
high-frequency details.

VII. CONCLUSION

This paper introduces WiSR, an innovative generative recov-
ery model designed specifically for Wi-Fi signals, operating
on raw CSI waveforms. WiSR stands out for its ability to
recover high-fidelity time-series signals. It achieves this by
utilizing two innovative denoising methods and applying a loss
function in both the temporal and frequency domains. This
process allows it to capture the complex characteristics of Wi-
Fi signals across the spatial, temporal, and frequency domains.
Comprehensive experimental results demonstrate that WiSR
can enhance the accuracy of wireless sensing systems, par-
ticularly under low and irregular frame rates, thereby offering
significant potential for key wireless tasks.
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