
1

Pushing the Limits of WiFi-based Gait Recognition
Towards Non-gait Human Behaviors
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Abstract—WiFi-based gait recognition technologies have seen
significant advancements in recent years. However, most existing
approaches rely on a critical assumption: users must walk
continuously and maintain a consistent body posture. This poses
a substantial challenge when users engage in non-periodic or
discontinuous behaviors (e.g., stopping, starting, or turning mid-
walk), which can disrupt the extraction of gait-related features
and degrade recognition performance. To address this issue, we
propose freeGait, a novel approach designed to mitigate the
impact of non-gait behaviors in WiFi-based gait recognition
systems. Our solution models this problem as domain adap-
tation, where we learn domain-independent representations to
isolate gait features from behavior-dependent noise. We treat
human behaviors with labeled user data as source domains
and behaviors without user labels as target domains. However,
applying domain adaptation directly is challenging due to the
ambiguous classification boundaries in the target domains for
WiFi signals. To overcome this, we align the posterior distribu-
tions between the source and target domains and constrain the
conditional distribution within the target domains to enhance
gait classification accuracy. Additionally, we implement a data
augmentation module to generate data resembling the labeled
data, while supervised learning ensures distinctiveness between
users. Our experiments, conducted with 20 participants across
3 different scenarios, demonstrate that freeGait can accurately
predict data across 15 domains by labeling only a small subset
from 6 source domains, achieving up to a 45% improvement in
user classification accuracy compared to existing methods.

Index Terms—WiFi-based Sensing, Gait Recognition, Data
Augmentation, Domain Adaptive Network.

I. INTRODUCTION

HUMAN identification has become a crucial factor in
various applications, including security management

and personalized services in smart spaces [1]–[3]. Numerous
studies have explored key aspects of human identification
using different technologies, but they all face significant
limitations. For example, video-based methods [4], [5] are
sensitive to lighting conditions and raise privacy concerns.
Acoustic signal-based methods [6], [7] are vulnerable to
environmental noise and mimicry attacks. Wearable device-
based methods [8], [9] require users to wear devices, leading
to discomfort. Millimeter-wave radar-based methods [10], [11]
entail additional hardware deployment costs and have limited
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sensing ranges. Biometric methods, such as facial recognition,
fingerprint, and iris scanning [12], [13], are associated with
privacy issues, contact requirements, and high costs. Further-
more, infrared camera-based methods [14]–[16] are easily
affected by occlusion and temperature, and require additional
installation and maintenance investments for large-scale de-
ployment. While they address privacy concerns associated with
RGB images, infrared cameras can still cause user discomfort
due to the perception of surveillance.

Compared to these advanced technologies, WiFi-based hu-
man recognition, particularly gait recognition, has gained
significant attention recently due to its advantages of ubiquity,
non-contact, and non-invasion [1], [2], [17]–[19]. The basic
principle is that as a person walks, their movements disrupt
WiFi signals, such as channel state information (CSI), and
each individual’s walking pattern is distinct. These differences
in limb movement and speed serve as a unique signature
of a person’s gait, enabling user identification. While previ-
ous WiFi-based gait recognition systems have offered certain
conveniences for human identification, significant challenges
remain in deploying these systems in the real world.

In particular, current WiFi-based gait recognition systems
are typically developed under the assumption that the walk-
ing patterns of users are periodic. The effectiveness of CSI
in capturing gait patterns lies in the physical principles of
multipath signal propagation. When a person walks, their
periodic limb movements modulate the wireless signals trav-
eling between the transmitter and receiver. These movements
introduce predictable changes in the amplitude and phase
of the CSI signals, forming distinctive patterns. Specifically,
the rhythmic swinging of arms and legs creates consistent
fluctuations in multipath signal components, which manifest as
periodic variations in the time-frequency domain. However, we
observe that in real-world scenarios, users not only move their
legs when walking, but may also be accompanied by various
other non-periodic human behaviors (e.g., turning around,
bending, and carrying luggage), as shown in Fig. 1. What’s
more, in many cases, people often do not walk continuously;
instead, they may start, stop, and change pace. Such non-
periodicity and discontinuity are challenging for scenarios that
require long-term human recognition, as the system may fail to
comprehensively capture the distinctive gait-related features,
leading to performance issues. Therefore, in this paper, we
raise a problem: ”Could WiFi technology have the potential
to extract stable gait features accompanying various non-gait
human behaviors?”

Most WiFi-based gait recognition schemes rely on CSI to
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Fig. 1. Users are often accompanied by various gait or non-gait human behaviors when walking, e.g., normal continuous walking (B1), bending or
waving (B2), carrying luggage (B3). WiFi propagation signals under different non-gait human behaviors are different, which leads to inconsistency
in user gait patterns based on WiFi, thus making the gait recognition system ineffective. freeGait can accurately extract the users’ gait features
despite their accompanying various non-gait behaviors.

extract features related to gait. Since CSI captures detailed
channel characteristics, it is highly sensitive to variations in
human behaviors. As shown in Fig. 1, we give an example. It
can be seen that the reflection paths between the laptop (i.e.,
Tx) and the WiFi router (i.e., Rx) change due to differences
in human behaviors, resulting in the inability to accurately
separate gait features even if the same people walks along the
same path, and ultimately making different users’ gait features
are mingled together. It indicates that human non-gait patterns
extremely interfere with the distribution of gait features. A
more detailed analysis of human behaviors and gait patterns
is given in Section II-B.

Theoretically, if we could gather sufficient CSI data captur-
ing every possible behavior of each user, we could train a gait
recognition model resilient to variations in human behavior.
However, given the vast diversity and complexity of human
behaviors, as well as the influence of different walking paths
on gait patterns, this approach would be exceedingly labor-
intensive. Moreover, many non-gait behaviors and walking
paths might not be accounted for, making this solution im-
practical in real-world applications. An alternative approach
could involve integrating human behavior identification with
gait recognition systems, allowing for the accurate detection
and separation of human behaviors from the mixed CSI data.
However, this still requires comprehensive data collection
for all possible behaviors, and signal separation remains a
challenging task.

Furthermore, although some studies have attempted to miti-
gate the impact of walking paths by estimating the walking di-
rection, this typically requires setting up multiple transceivers
and ensuring that users walk normally and continuously within
a specific area [2], [20], [21]. However, such setups are cum-
bersome for many scenarios and users, limiting the practicality
of gait recognition systems. In addition, existing methods
predominantly focus on recognizing authorized users within
collected gait data, while seldom addressing the detection
of abnormal individuals. Especially, user behavior diversity
and environmental noise impact the accuracy of anomaly
detection. The diversity in user behaviors increases the risk
of misclassification, as anomalous behaviors can overlap with
normal gait patterns, and unstable CSI quality can significantly

reduce detection precision. Due to these limitations, current
approaches are not only impractical for real-world applications
but also difficult to scale across broader scenarios. Therefore,
in this paper, we focus on achieving accurate gait recognition
for users engaged in various human behaviors using only a
single pair of WiFi transceivers, while also enabling real-time
detection of anomalous users to enhance the system’s security
and adaptability.

Therefore, to develop a behavior-robust gait recognition
system with only a pair of WiFi transceivers, we face three
key challenges:

• Users are often accompanied by various non-periodic
or discontinuous human behaviors while walking, each
exerting a different influence on WiFi-based gait patterns.
To eliminate these influences, we would need to account
for all possible human behaviors during gait data collec-
tion to accurately capture the user’s identity. However,
this is challenging to achieve.

• Other items, such as walking paths and speeds, also affect
the gait patterns of users. To address these influences,
we would need to account for all possible variations in
these factors, even when the same human behavior is
performed. However, it is impractical to label data for
every possible combination of these factors associated
with the user.

• Extracting fine-grained gait patterns using a pair of WiFi
transceivers is challenging. When the user is positioned
far from the WiFi transceiver or walking in a direction
nearly parallel to it, the CSI noise can overwhelm and
obscure the gait pattern. Besides, the gait patterns of
abnormal users are unseen and easily confused with those
of legal users, increasing the difficulty of detection.

To address the above challenges, we present freeGait, a
WiFi gait recognition system based on data processing meth-
ods and a fine-grained deep learning framework, only by
collecting and labeling a small amount of CSI data from one
WiFi transceiver.

Firstly, we perform a series of processing on the raw CSI
and obtain refined spectrograms reflecting the users’ gait pat-
terns. Specifically, we observe that using principal component
analysis (PCA) at the subcarrier level and extracting the first
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principal component can better remove environmental noise.
Then, to eliminate automatic gain control (AGC) noise, while
retaining the original data characteristics, we use density-
based spatial clustering of applications with noise (DBSCAN)
on the CSI and extract the class with the highest density.
These techniques enable the effective extraction of dynamic
target signals, even when the user is positioned far from the
transceiver. Additionally, we use short-time Fourier transform
(STFT) to obtain the spectrograms.

Secondly, we model the acquisition of gait features inde-
pendent of human behaviors and walking paths as the domain
adaptation problem. Specifically, freeGait considers human
behaviors and walking paths in the database with users’ IDs
as the source domains, and unknown human behaviors and
walking paths without users’ IDs as the target domains. The
network model is then jointly trained using labeled user’s
ID data in the source domains and unlabeled data in the
target domains, and the ultimate goal is to learn common
features (gait patterns) of the labeled data and unlabeled data,
while downplaying the differences between source and target
domains (effects of different human behaviors and walking
paths). In this way, freeGait can predict users from different
human behaviors and walking paths without relabeling users’
IDs for new data.

Although there has been some domain adaptation works
in WiFi sensing [22]–[27], they mainly focus on tasks such
as gesture recognition, presence detection, localization, and
targeting challenges associated with environmental or device
settings changes. While these approaches achieve robustness in
their respective tasks, they do not address the unique challenge
of behavioral diversity in gait recognition. Our work fills this
gap by modeling the acquisition of gait features independent
of human behavior and walking paths as a domain adaptation
problem. The core idea of using domain adaptation in gait
recognition is to align feature distributions across different
domains (e.g., behaviors and walking paths) while preserving
gait-related physical characteristics, such as the periodicity
of human motion and Doppler shifts introduced by limb
movement. In domain adaptation, we aim to align the periodic
gait features and Doppler shifts across different domains. This
alignment helps to reduce the variation caused by changes in
human behaviors and walking paths. Specifically, adversarial
domain adaptation and feature alignment techniques are used
to map the gait features from different domains into a shared
space, where gait-related patterns are preserved, and non-gait
related variations are minimized.

Thirdly, to obtain enough source domain data to eliminate
the influence of different human behaviors and other items, we
utilize data augmentation technology to generate synthetic data
similar to the collected labeled data with users’ IDs, allowing
us to scale the labeled data to cover a wide range of human be-
haviors and other items. Specifically, we collect some data for
each user walking along different paths (e.g., one-minute data),
combine it with human behaviors data in the source domains,
and use an adversarial autoencoder (AAE) [28], generating
similar but different gait data for each user separately. In
addition, we incorporate the idea of supervised learning to
avoid generating extremely close sample data among different

users. In this way, freeGait can predict users’ gait under more
human behaviors, and walking paths.

Finally, we also detect intruders by identifying unauthorized
users. Specifically, we achieve this by setting a threshold based
on class density and comparing the distance between a new
user and the nearest neighbor class to determine whether the
user is unauthorized.

In summary, the main contributions of this paper are:
• In this paper, we analyze the impact of users’ non-

periodic or discontinuous behaviors on WiFi-based gait
recognition. Then, we propose freeGait, a WiFi-based
gait recognition system, that aims to mitigate users’
diverse non-gait behaviors while maintaining accurate
gait recognition.

• We design domain adaptation techniques to reduce the
coupling of gait patterns with behaviors and paths, and
enable freeGait to learn behavior- and path-independent
gait features. Then, we design a data augmentation
method so that using only a small amount of labeled data
with users’ IDs, freeGait can perform well in processing
a variety of rich gait data of behaviors and paths without
user IDs.

• We implement freeGait with a pair of WiFi transceivers
and conduct extensive experiments. We define 6 differ-
ent human behaviors, 3 different walking paths, and 3
different walking speeds, and recruit twenty volunteers
of different heights and weights to participate in the
experiment. The results show that accurate predictions
for a total of 15 domains can be achieved by collecting
and labeling only a small amount of data from 6 source
domains, which is at worst 45% improvement over other
existing techniques.

The rest of this paper is organized as follows: Section II
presents the basic principles of gait recognition based on WiFi
CSI and the impact of human behavior on gait features. We
show the overview of freeGait in Section III. In Section IV, we
describe the module design of the proposed framework in de-
tail. Implementation and evaluation are presented in Section V
and Section VI. In Section VII, we discuss the limitations of
this work and future work. Section VIII discusses the related
works. We finally conclude our work in Section IX.

II. PRELIMINARIES

A. Gait Recognition Based on WiFi CSI

Channel State Information (CSI) captures the intricate
characteristics of WiFi signal propagation, detailing various
aspects of the transmission path, including signal attenuation,
multipath effects, and scattering. Specifically, CSI can be
represented as the values of each element within the channel
matrix H [29]. Modern WiFi technologies often employ Or-
thogonal Frequency Division Multiplexing (OFDM) and Mul-
tiple Input Multiple Output (MIMO), where each channel
between transmitter and receiver pairs (TX-RX) is composed
of multiple subcarriers across multiple antenna pairs. This
inherently enriches the data available for CSI-based sensing
solutions. In particular, some work has developed tools that
can extract CSI from received WiFi packets and obtain the
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Fig. 2. Spectrograms of three different people walking with three different human behaviors (behavior 1: normal continuous walking; behavior
2: stop-and-go and bending; behavior 3: individual carrying luggage). Even for the same people, gait patterns are different in different human
behaviors.
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Fig. 3. Structural Similarity Index Measure (SSIM) of the Spectrograms
of the same or different people and behaviors with different walking
paths: (a) tr1 and (b) tr2.

channel matrix H, such as Intel 5300 CSI Tool [30], Atheros
CSI Tool [31] and Nexmon CSI Extractor [32], which has made
WiFi sensing solutions based on CSI flourish in recent years.

Similar to other CSI-based passive WiFi sensing systems,
CSI-based gait recognition leverages the fundamental principle
that human movement induces distinct disturbances in WiFi
signals. When individuals with varying walking patterns move
within a fixed Tx-Rx setup, they either absorb or reflect WiFi
signals in unique ways, leading to distinct variations in the
channel matrix H [2], [17]. Given that the CSI phase can be
influenced by numerous factors, this paper focuses exclusively
on using the amplitude of CSI as input:

H[t] = (|h1,1[t]| , · · · , |h1,nsc [t]| , · · · , |hnss,nsc [t]|) , (1)

where hi,j [t] represents the CSI value of the i-th stream on
the j-th subcarrier collected at time t, nsc and nss are the
numbers of spatial streams and frequency subcarriers, and | ·
| denotes the amplitudes of complex numbers. Then we use
the preprocessed input parameters (e.g., sub-spectrograms) to
extract gait features related to individuals. Detailed processing
is given in Section IV-A.

B. Human Behaviors Impact Analysis

When users walk at different times and engage in various
behaviors, the WiFi signals reflected by their bodies differ
due to complex and dynamic multipath effects, even for the
same individual. For continuous gait patterns, the CSI signal
exhibits periodic characteristics due to the regular movement
of the human body, particularly the limbs. The regularity of

gait movements results in periodic changes in signal amplitude
and phase, which can be captured and used to extract gait
features. These features are typically smooth, with consistent
frequency and amplitude patterns that reflect the cyclic nature
of human walking. In contrast, non-periodic behaviors lead to
discontinuous or irregular CSI patterns. These behaviors result
in sharp, erratic changes in signal amplitude and phase, which
are not characteristic of continuous walking. For example,
when a person stops or changes direction abruptly, the CSI
signal may exhibit sudden drops, spikes, or rapid fluctuations
that disrupt the otherwise smooth, periodic signal patterns
associated with gait.

To examine how different human behaviors impact CSI,
we conduct preliminary tests in a 12m × 10m space. We
invite three volunteers (i.e., P1, P2, and P3) with varying
heights and weights to participate. Each volunteer walks along
the same path within a designated area and performs three
distinct behaviors: normal continuous walking (B1), stop-
and-go and bending (B2), and individual carrying luggage
(B3), as depicted in Fig. 1. The Tx and Rx are established
using an Industrial Personal Computer (IPC) equipped with
an Intel 5300 Network Interface Card (NIC), operating at
the 5GHz/HT40- ISM band, with a packet sending rate set
to 1000Hz. CSI is collected for each volunteer across the
different behaviors, with each condition repeated three times.
Notably, our analysis focuses solely on the influence of human
behaviors on gait patterns, ensuring that volunteers walk
the same path each time, with the scenario (including the
environment and transceiver setup) remaining unchanged.

We extract the amplitude of each CSI packet and focus on
analyzing the gait patterns of different individuals using the
30 subcarriers from the first antenna of the Rx. The raw CSI
amplitude undergoes a series of preprocessing steps, including
data denoising and Short-Time Fourier Transform (STFT), to
generate spectrograms for each condition, as detailed in Sec-
tion IV-A. Fig. 2 illustrates the gait patterns of three volunteers
as they walk while performing three distinct human behaviors.
Even when the same individuals walk along the same path
and in the same direction, the accompanying behaviors lead
to noticeable variations in gait patterns.

In fact, these behavior-induced variations can sometimes
exceed the differences between the gait patterns of different
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Fig. 4. Overview of freeGait: consists of data preprocessing, data augmentation, cross-domain gait recognition, and abnormal user detection.

individuals. To analyze the impact of human behaviors on
gait patterns in detail, we calculate the Structural Similarity
Index Measure (SSIM) of the spectrograms under the same
or different conditions, and the results are shown in Fig. 3,
where the three users and three behaviors in Fig. 3(a) and
Fig. 3(b) are the same, but with different walking paths (tr1
and tr2). Intuitively, we can see that human behavior confuses
the correlation of user gait patterns and makes them difficult
to distinguish. Consequently, gait recognition accuracy may
decline when subjects engage in untrained behaviors during
walking. This analysis underscores the significant impact of
accompanying human behaviors on gait patterns. We then
demonstrate how our proposed techniques and models mitigate
this effect, relying on only a small amount of labeled gait data
from different behaviors.

III. OVERVIEW

A. Problem Definition

The goal of this paper is to make the WiFi-based gait recog-
nition system independent of the subject’s human behaviors
and walking paths, and only by labeling a small amount of
gait sample data during one or a few behaviors, the subject’s
gait can be accurately identified, even if accompanied by more
diverse behaviors or paths. As shown in Fig. 4, we place
one Tx and one Rx in the physical space to form a WiFi
propagation link, so that a gait sensing area can be constructed.
Specifically, we collect the CSI data of each subject when
walking within the sensing area and input them into freeGait.
Among them, a small part of the data (i.e., known behaviors
and paths) carries users’ IDs, and the remaining data (i.e.,
unknown behaviors and paths) does not carry users’ IDs. The
final result should be one that can accurately predict the users’
IDs corresponding to all gait data (i.e., labeled and unlabeled
data with different behaviors and paths).

B. freeGait’s Architecture

As shown in Fig. 4, we place one Tx and one Rx in the
physical space to form a WiFi propagation link, so that a gait
sensing area can be constructed. freeGait mainly consists of
five modules: data preprocessing, data augmentation, feature
extraction, gait classification, and domain discrimination.

Data preprocessing. We extract the amplitude from the
original CSI data collected. Then, we perform PCA at the
subcarrier level to filter out environmental noise and remove

the influence of AGC to obtain clean CSI. Next, we perform
linear interpolation and bandpass filtering to obtain the equally
sampled gait-related signals of interest to facilitate the extrac-
tion of gait patterns. Finally, we perform STFT on each piece
of CSI data to generate and enhance the spectrogram as input
to the model.

Data augmentation. A small part of the data (i.e., known
behaviors and paths) with users’ IDs enters the AAE-based
data augmentation, and each user’s labeled data enters an AAE
to generate data separately to expand more potential human
behaviors and walking paths.

Cross-domain gait recognition. The augmented labeled
data (source domains data) and unlabeled data (target domains
data) are input the cross-domain gait recognition to learn gait
features independent of non-gait human behaviors and walking
paths.

Abnormal user detection. During training, we calculate the
average neighbor distance of each legitimate category as the
category density Θ. During testing, we identify the average
distance θ of the K-nearest neighbors (KNN) of the test
sample, and if it is greater than the weighted category density,
the test sample is considered to be from an illegal user.

IV. SYSTEM DESIGN

A. Data Preprocessing

Given the raw CSIs, we perform a series of preprocessing
on them to obtain many refined spectrograms that can be used
to extract gait features. In this paper, we use the Linux 802.11n
CSI Tool [30] to collect CSIs based on the Intel 5300 NIC. Tx
is equipped with one antenna and Rx is equipped with three
antennas. We set the sampling rate to 1000Hz, and each CSI
packet contains 30 OFDM subcarriers. Thus, we can get about
90000 CSI values per second.

Subcarrier-level PCA. Raw CSI collected using WiFi
NICs contains significant noise [33], primarily manifesting as
environmental noise and AGC noise [34], [35]. Environmental
noise typically follows a Gaussian distribution throughout the
space [36]. In our setup, we use a single WiFi transceiver
to continuously recognize the user’s gait during the entire
walking process. When the user is distant from the transceiver
or walks in a direction nearly parallel to the propagation path,
the gait pattern can be overwhelmed by noise. Traditional
denoising methods (e.g., lowpass, wavelet) tend to perform
poorly under these conditions [37]. Moreover, the effectiveness
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Fig. 5. Data preprocessing: (a) CSI after subcarrier-level PCA. (b) CSI
after AGC removal. (c) Raw spectrogram. (d) Enhancement spectrogram.
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Fig. 6. The first component of the subcarrier-level PCA is higher than
time-level PCA.

of conventional PCA denoising in the time dimension hinges
on the selection of the number of principal components;
choosing too many or too few components may either retain
environmental noise or lose important target signals. When
dynamic signals are masked by environmental noise, PCA
becomes less effective as the principal components do not
represent the dynamic signal.

To address this, we shift our focus to the subcarrier level. By
transposing the CSI matrix, we represent the reflection paths
of all subcarriers in the environment over time. As illustrated
in Fig. 6(a), at the subcarrier level, changes in CSI amplitude
correspond to alterations in reflection paths caused by human
motion. Assuming a static environment, CSI data in the
subcarrier dimension exhibit a higher correlation. We employ
a covariance method to compute PCA on CSI data collected at
various distances and measure their correlation [38], [39]. As
shown in Fig. 6(b), while the contribution of the first principal
component in the time dimension decreases with increasing
distance, the contribution of the first principal component
in the subcarrier dimension remains consistently high across
different distances. Thus, by applying PCA at the subcarrier
level, we can effectively remove environmental noise using just
the first principal component, even when the noise significantly
masks the gait pattern, as demonstrated in Fig. 5(a).

AGC removal. After removing environmental noise, we
also need to address the influence of AGC noise. Previous
approaches have effectively removed AGC noise using the
ratio of two antennas [40]. However, in this paper, we avoid
the ratio method to fully preserve the original distribution of
CSI data. Our observations reveal that AGC noise manifests
as uncertain and sparse points surrounding the dynamic signal
in the time dimension [41], [42]. We can filter out this noise

by targeting its sparse density distribution. Specifically, we
employ the DBSCAN spatial clustering method [43] to cluster
AGC-related points based on their sparse distribution density
and retain only the cluster with the highest number of scatter
points [39]. The effectiveness of this approach is illustrated in
Fig. 5(b).

Linear interpolation and bandpass filtering. During the
process of collecting CSI by WiFi NIC, a small number of
data packets will not be evenly distributed over time. However,
we execute STFT based on a fixed time window (3 seconds)
and generate a spectrogram as an initial feature input to the
network model. Therefore, we linearly interpolate the data of
each subcarrier at equal time intervals based on the timestamp
of the CSI packet and according to the sampling rate of
1000Hz. In addition, the effective frequency range related to
gait is from 10Hz to 70Hz [20], so we use a Butterworth-
based bandpass filter to remove the signals outside the effective
frequency range.

Spectrogram generation and enhancement. To represent
the gait features of different people while walking, we perform
STFT on the CSI processed above to obtain a spectrogram
reflecting time and frequency information. Specifically, we
first apply a sliding window to slice the time series CSI, each
segment contains 3s (i.e., 3000 CSI packets), and the sliding
window is 1s (i.e., 1000 CSI packets apart). Then, we perform
STFT on each slice. To maintain the balance of time and
frequency resolution, we set the FFT size to 1024 and the
sliding window step size to 6, which can achieve a frequency
resolution of 0.95Hz and a time resolution of 6 ms, which has
a better discrimination effect on human gait signals between
10Hz and 70Hz. The spectrogram is shown in Fig. 5(c). We
only show the image of 0-80Hz, where yellow indicates higher
reflected energy.

Furthermore, to reduce the noise of the spectrogram to
obtain a refined spectrogram, we used some technologies in
WifiU [17] to enhance each spectrogram. Specifically, we
add the amplitudes of the corresponding spectrograms of 30
subcarriers to obtain the superimposed spectrogram, and only
retain 0-80Hz. We then normalize each FFT block and subtract
the mean of the amplitude of the entire spectrogram to remove
background noise (anything less than 0 is set to 0). Finally,
we apply a two-dimensional Gaussian filter with size=10 and
δ = 0.4 to obtain the enhanced spectrogram, and the result is
shown in Fig. 5(d).

B. Cross-Domain Gait Recognition

The deep learning network framework for cross-domain gait
recognition in freeGait is shown in Fig. 7. It mainly consists
of feature extraction, gait classification, and domain discrim-
ination. Specifically, we input the augmented and unlabeled
data into the feature extraction module based on convolutional
neural network (CNN) and long short-term memory (LSTM)
to generate latent features for low-dimensional representa-
tion. Then, based on the generated latent features, the gait
classification module is used to obtain the predicted user
with maximized classification accuracy. At the same time,
to eliminate the influence of different human behaviors and
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Fig. 7. The framework for learning behavior- and path-independent gait
features using domain adaptation is used in freeGait.

walking paths (i.e., domain-specific features), we design a
domain discrimination module to predict each domain. The
goal of the domain discrimination module is to maximize
the accuracy of domain labeling, which seems to contradict
learning domain-independent features. However, the feature
extraction module is designed to try its best to deceive the
domain discrimination module, i.e., to minimize the prediction
accuracy of behaviors and paths, while improving the user gait
prediction accuracy. In this way, we achieve learning common
features that are independent of human behaviors and walking
paths that define users.

Feature extraction. As shown in Fig. 7, we input all labeled
and unlabeled data together into the feature extractor to output
their feature vectors. We use the widely adopted CNN and
LSTM deep learning architectures to extract gait features [44],
[45]. Particularly, we use three-layer stacked CNN and three-
layer stacked LSTM. As shown in Fig. 8, at each layer of
the CNN, we use convolutional layers with 2D convolution
kernels, utilize batch normalization layers to speed up training
with the batch size is 256, insert rectified linear units (ReLUs)
to introduce nonlinearity, and use max pooling layers to reduce
the size of the representation. In addition, LSTM has good
performance in time series data processing. It is used to learn
the temporal dynamic features extracted by CNN. Each LSTM
layer has the same number of neurons and the number of
each LSTM is 128, and uses the Sigmoid activation function.
Therefore, given the input data Si, we can obtain the features
Zi through CNN and LSTM:

Zi = CNN(Si; Θcnn)⊕ LSTM(Si; Θlstm), (2)

where Θlstm and Θlstm are the parameters of CNN and
LSTM, ⊕ represents the operation of concatenation.

Gait classification. As shown in Fig. 7, after obtaining the
feature Zi, we use three fully connected layers [46] and the
activation function ReLU to learn the representation Vi of Si,
and let Vi through an output layer with an activation function
of softmax to obtain the predicted probability vector ŷi of the
gait. It is worth noting that the reason why three fully con-
nected layers are used is to obtain more parameters, and more
fully connected layers do not improve the performance much.
In addition, to improve the accuracy of gait classification, we

Conv-2D
Conv-2D

Conv-2D

Max-pooling (4×4)ReLUBatchNorm

64×64×8 32×32×16 16×16×32

Fig. 8. Three-layer CNN architecture for feature extraction, each CNN
layer uses 2D convolution with batch normalization, ReLU activation for
nonlinearity, and max pooling to reduce representation size.

use a combination of supervised learning and unsupervised
learning [47]. Specifically, we predict user labels ŷai and ŷui
for labeled and unlabeled data respectively. For all data, we
use cross-entropy as the loss function for gait classification:

La = − 1

na

na∑
i=1

K∑
k=1

yaik log (ŷ
a
ik) ,

Lu = − 1

nu

nu∑
i=1

K∑
k=1

ŷuik log (ŷ
u
ik) ,

(3)

where na and nu are the numbers of labeled and unlabeled
data used for training, and K is the total number of users.

Domain discrimination. Domain-adversarial training of
neural networks (DANN) is a special case of transfer learn-
ing [48]. We use the idea of DANN to eliminate the effects of
human behaviors and walking paths. Specifically, we define
different walking paths and human behaviors as different
domains, and the domain discriminator is used to identify
different walking paths and human behaviors. Our goal is to
enable the feature extractor to fool the domain discriminator,
thereby producing gait features that are independent of human
behaviors and walking paths.

As shown in Fig. 7, we input the output Zi of the feature
extractor into the domain discriminator and predict the domain
label d̂i through the same process. The domain discriminator
is also composed of three fully connected layers with the
activation function ReLU and an output layer with the softmax
activation function. We use cross-entropy as the loss function
for domain label prediction:

Ld = − 1

nd

nd∑
i=1

D∑
j=1

dij log
(
d̂ij

)
, (4)

where nd is the training data number, and D is the number of
domains.

However, directly applying DANN to our specific problem
of gait recognition does not work well. In fact, for WiFi
signals, it is difficult to distinguish the features of different
domains and the features of different gaits, which makes the
classification of unknown target domains very challenging. To
improve the classification performance of the target domains,
we adopt two operations to optimize the model. Firstly, we
concatenate Zi with the predicted label ŷi of the gait classifi-
cation, and align the posterior distributions of the source and
target domains:

Pi = Zi ⊕ ŷi, (5)
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Fig. 9. We train AAE-based data augmentation with different distributions N(0, k) for each user k to generate data similar to labeled data.

which together feed into the domain discriminator to predict
the domain label d̂oij . We use cross-entropy as the loss func-
tion:

Lo = − 1

nd

nd∑
i=1

D∑
j=1

dij log
(
d̂oij

)
. (6)

Secondly, we add classification constraints to the target do-
mains, and use the conditional entropy as the loss function for
target domain classification:

Lt = − 1

nt

nt∑
i=1

d̂ti log
(
d̂i

)
. (7)

where nt is the number of target domains data, d̂ti is the predict
label of target domain. In this way, the domain discriminator
attempts to separate target domain data with the same domain
label, thereby better obtaining domain-independent gait fea-
tures.

Model training. The overall loss function of our model:

Lall = La + αLo + βLd + γLo + λLt, (8)

where α, β and γ are hyperparameters. The goal of model
training is to minimize the loss La+αLo of gait classification,
while maximizing the loss βLd+γLo+λLt of the domain dis-
criminator. Note that the loss of the domain discrimination is
inverted when backpropagated, while the gait classification is
directly backpropagated [49]. We use all labeled and unlabeled
data to train the model and iteratively update the parameters
during the training process. In particular, we use a learning
rate λp that changes as the iteration progresses so that the
model learns the parameters better:

λp =
λ0

(1 + γ · p)µ
(9)

where λ0 is the initial learning rate, p is the ratio of the current
to the total iterations, γ and µ are hyperparameters.

C. Data Augmentation

To better eliminate the influence of walking paths and
behaviors on gait patterns, a feasible solution is to collect as
much CSI as possible of different walking paths and behaviors.
However, the time and labor costs of collecting and labeling
data from different users are huge. In addition, although there
are works to calculate the user’s walking direction through
two mutually perpendicular WiFi transceiver links [2], [18],
[20], this requires strictly accurate prior position knowledge

of the transceiver and requires the user to walk normally and
continuously in a specific area, so it cannot meet the needs of
this paper. Fortunately, data augmentation schemes have been
widely used recently, aiming to expand the training data set by
generating more equivalent data from limited data [50]–[52].
Thus, we use the idea of data augmentation to generate more
data on potential behaviors and paths.

Specifically, we design the AAE [28] as shown in Fig. 9,
and use a separate AAE for each user’s labeled gait data, that
is, if K users need to be identified, we train K AAEs. AAE is
a general method that can convert autoencoders into generative
models. It combines adversarial ideas, and its typical network
architecture consists of a standard autoencoder (AE) [53]
and a generative adversarial Network (GAN) [54]. AAE aims
to enable the decoder to generate realistic samples from any
sampled data point by encouraging the encoder’s output to
completely fill the space of the prior distribution. GAN and AE
are trained together in two stages, namely the reconstruction
stage and the regularization stage. During the reconstruction
stage, AE updates the encoder and decoder to minimize the
reconstruction error of the input. In the regularization stage,
GAN first updates its discriminator to separate real samples
from generated samples, and then GAN updates its generator
to confuse the discriminator. In this paper, we use a small
amount of processed spectrogram data accompanying human
behavior and different walking paths (i.e., source domain data)
for data augmentation, and we input these data Sk into the
corresponding AAE #k for training. Firstly, the data Sk

of the kth AAE into the encoder of AAE #k to generate
the latent vector z ∼ q(z), where q(z) is the aggregate
posterior distribution. z is sent to the decoder, and the vector
Ŝk is generated to reconstruct the data Sk. We define the
reconstruction loss Lk

B using Mean Square Error (MSE):

Lk
B =

1

2nk
g

nk
g∑

i=1

(
Sk
i − Ŝk

i

)2

, (10)

where nk
g is the number of samples.

Secondly, we train the discriminator to normalize the rebuilt
data. At this time, the encoder of AE becomes the generator
of GAN, and its output Sk is sent to the discriminator together
with the vector z′ that obeys the prior distribution p(z).
Here, we choose the normal distribution N(0, k) as the prior
distribution p(z). For the discriminator, the label lk is 0 when
Sk is used as input, and the label lk is 1 when z′ is used
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Fig. 10. Feature visualization of three legal users and one illegal user,
where the features of the legal users are closely clustered, while those of
the illegal user are randomly dispersed.

as input. Use cross entropy as the loss function Lk
G of the

discriminator:

Lk
G = − 1

nk
g

nk
g∑

i=1

(
lki log

(
l̂ki

)
+
(
1− lki

)
log

(
1− l̂ki

))
.

(11)
However, we find that since we use separate AAE for each

user for data augmentation, the rebuilt data samples are very
likely to be located among different users, which in turn affects
the classification accuracy of different users. In order to avoid
this situation, as shown in Fig. 9, in addition to the prior
distribution p(z) of each AAE being different (the variance
of the normal distribution is different), we also feed the user’s
label y (one-hot form) and the latent vector z into the decoder
together to force the decoder to generate data that is highly
relevant to users. Our goal for the augmented data is that the
size of the rebuilt data for the kth user is 10 times larger than
the size of the original labeled source domain data SL. Finally,
we collect all rebuilt data SR as well as source domain data
as labeled augmentation data SA = SR ∪ SL.

For each user, an AAE is initialized with a small set of
labeled gait data specific to that user, ensuring that the model
captures unique gait characteristics. These AAEs are deployed
in a parallelized, distributed framework, allowing for scalable
training across multiple users without significantly increasing
computational load. This setup leverages batch processing and
asynchronous updates, enabling efficient use of computational
resources and reducing overall training time as the number of
users grows. During training, backpropagation is applied to
minimize the reconstruction loss Lk

B , ensuring accurate gait
data reconstruction, with the goal of keeping this loss as low
as possible. In the regularization stage, the discriminator’s loss
Lk
G is targeted to be around 0.5, indicating a balance between

real and generated samples.

D. Abnormal User Detection

Detecting abnormal users is a very necessary problem
in actual gait recognition scenarios, because intruders may
imitate the gait of legitimate users and try to attack. Therefore,
we need to accurately identify abnormal users, even if there
are no data samples of intruders in the training set. To analyze
the extracted features of legitimate and illegal users, we first

Tx

Rx

(a) Scenario 1.

Tx

Rx

(b) Scenario 2.

Tx
Rx

(c) Scenario 3.

Fig. 11. Three different experimental scenarios.

train part of the data of three legitimate users (P1, P2, P3) to
obtain a classification model. Then, we input the test data of
the three legitimate users and the data of another illegal user
(P4) into the model and visualize the features of the feature
extraction module using t-SNE [55], and the results are shown
in Fig. 10. We can see that the feature points of the three
legitimate users are closely clustered, while the feature points
of the illegal users (red points) are randomly distributed in the
feature space. Therefore, we can implement abnormal user
detection based on the idea of clustering. Specifically, during
training, freeGait calculates the average neighbor distance of
each legitimate category as the category density Θi:

Θi =
1

K

K∑
i=1

dis(Zi) (12)

where dis(Zi) is the i-th sample’s feature. During testing, free-
Gait calculates the average distance θj = 1

K

∑K
j=1 dis(Zj)

of the K nearest neighbors (KNN) of the test sample. If
θj is greater than the category density Θτ of the most
common category τ among its K neighbors, the test sample
is considered to be from an illegal user, otherwise, the test
sample is considered to be from a legitimate user:

Lj =

{
τ, θj <= Θτ

0, θj > Θτ
(13)

where Lj = 0 indicates that sample j is from an illegal user.

V. PLATFORM IMPLEMENTATION

A. Hardware and Environments

We build the hardware platform based on two IPCs equipped
with Intel 5300 NICs, one of them used as Tx with one
antenna, another used as Rx with three antennas, and fixed
on a tripod 0.5m above the ground to better detect human
movement. As shown in Fig. 11, we deploy our experiments
in three different environments, and the distance between Tx
and Rx is 6m. Note that the environments and the positions
of the WiFi transceiver remain unchanged during all tests.
Although changes in the environment also cause changes in
CSI, we do not analyze this in the paper. In addition, all data
are preprocessed based on Matlab R2020b on a computer with
an Intel-i5 2.7GHz CPU. The deep learning model training and
result prediction are completed on a server with an NVIDIA
3090 graphics card based on Python 3.10 with CUDA 11.8
and Pytorch 2.0. We train our model offline with a total of
200 epochs. During training, the Adam optimizer is used with
a learning rate of 0.001.
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Fig. 12. Traces and volunteers: (a) Three different traces and (b) twenty
volunteers with different heights and weights.

(a) normal-and-continuous 
(B1)

(b) bending over 
(B2)

(c) swinging arms
 (B3)

(d) stop-and-go
 (B4)

(e) turning around
 (B5)

(f) carrying luggage
 (B6)

Fig. 13. We define six common human behaviors during walking as non-
gait behaviors, including (a) normal-and-continuous (B1); (b) bending
over (B2); (c) swinging arms (B3); (d) stop-and-go (B4); (e) turning
around (B5); (f) carrying luggage (B6).

B. Data Collection

To collect CSI of different human behaviors and walking
paths, we considered six human behaviors (i.e., B1-B6) as
shown in Fig. 13, and three paths (i.e., tr1-tr3) as shown in
Fig. 12(a). These behaviors were selected based on their poten-
tial to interact with and influence gait patterns, as each behav-
ior may introduce different types of motion or perturbations
to the walking process. These behaviors represent common,
real-world actions that may occur during walking, making
them well-suited for assessing the robustness of freeGait
under diverse conditions. The six behaviors we defined are as
follows: (a) Normal-and-continuous (B1): This behavior rep-
resents the baseline walking condition, without interruptions,
allowing us to capture standard gait patterns. (b) Bending
over (B2): Bending is a common behavior that can change
body posture and affect weight distribution, which may affect
gait patterns. (c) Swinging arms (B3): Arm movements affect
the body’s center of mass and affect walking rhythm, which
may interfere with gait features. (d) Stop-and-go (B4): Sudden
stops or changes in walking speed introduce perturbations that
are particularly difficult for gait recognition systems to adapt
to. (e) Turning around (B5): Turning involves a change in
body orientation, which may cause noticeable changes in WiFi
signals, affecting the accuracy of gait recognition. (f) Carrying
luggage (B6): Carrying additional weight alters the body’s
natural movement patterns, making it a relevant behavior for
testing how external factors affect gait recognition.

We recruit twenty volunteers of different heights and
weights (i.e., P1-P20) to record the CSI of different people
in three scenarios as shown in Fig. 11. The allocation de-
tail of scenarios and volunteers is as shown in Fig. 12(b).
We install the CSI Tool on two IPCs and collect CSI us-

ing injection/monitoring mode with the sampling rate set to
1000Hz [30]. We ask each volunteer to walk and collect CSI
as follows: (i) Each user walks along tr1 at a normal speed
according to six different human behaviors, and each human
behavior is repeated three times. (ii) Each user walks along tr2
at a normal speed according to six different human behaviors,
and each human behavior is repeated three times. (iii) Each
user walks along tr3 according to human behavior 1 (i.e., B1)
at three different speeds (i.e., slow (S1), normal (S2), fast (S3))
for one minute at each speed.

Then, we follow the method in Section IV-A to perform data
preprocessing and obtain the spectrograms. Specifically, there
are

∑Nb

i=1 Ni sets of spectrogram data for each user (Ni is the
number of sliced data in each case, Nb is the total number of
cases, i.e., the number of domains), and the size of each group
of data is 3 × 80 × 458 (antenna × frequency × time). We
divide the data into 6+6+3 = 15 domains based on walking
paths and human behaviors, and randomly divide the data in
each domain into 50% training data and 50% testing data.
Furthermore, for the training data, the source domain data has
user labels, while the target domain data does not have user
labels. Additionally, all tags are encoded using one-hot.

C. Baseline Methods
• Basic-CNN is used as the baseline, i.e., without data aug-

mentation and domain adaptation, labeled and unlabeled
data are directly input into CNN and LSTM-based feature
extractors and gait classifiers to directly predict users’
labels. Some previous work is based on this scheme [2].

• AAE-only implements only freeGait’s AAE and connects
them directly to the feature extractor and gait classifier
without domain adaptation.

• Domain-adaptation-only implements only the domain
adaptation network of freeGait, i.e., directly feeds labeled
and unlabeled data into the feature extractor, gait classi-
fier, and domain discriminator without AAEs.

• WiFi-ID [1] employs manually designed time-domain
and frequency-domain features and uses the ReliefF al-
gorithm to select high-weight features for classification
based on Sparse Approximation Classification (SAC).

• WifiU [17] applies a series of spectrogram enhancement
techniques and manual feature extraction to serve as
fingerprints for user gait patterns, and trains a LibSVM
classifier.

Notably, we avoid comparing our system with gait recognition
methods based on multi-transceiver setups (e.g., WiDIGR [18],
Wi-PIGR [2], MetaGANFi [19]) because our data is collected
using a single transceiver pair. MetaGANFi, in particular, is
designed for environments with multiple transceivers and aims
to address device position changes, which is fundamentally
different from our single-transceiver approach. Therefore, di-
rect comparison with these systems is not fair or applicable to
our work.

VI. EVALUATION

A. Basic Performance of freeGait
To evaluate the basic performance of freeGait, we first

classify the gait data of three volunteers in Scenario 1, as
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Fig. 14. The user prediction confusion matrices obtained after the predicted data of three users pass through the basic CNN, AAE-only, domain
adaptation-only, and freeGait respectively.

TABLE I
DATASET PARTITIONING FOR BASIC PERFORMANCE, THE IMPACT OF

DIFFERENT BEHAVIORS, TRACES, SPEED, AMOUNT OF AUGMENTED
DATA, SAMPLING RATE, AND LOSS FUNCTION.

Scenario Scenario 1
People P1, P2, P3

Source Domains [B1/B4/B6 tr1, B5 tr2, S1/S3 tr3] (50%)
Target Domains Other 9 Combinations (50%)

Test Set All 15 Combinations (50%)

TABLE II
CLASSIFICATION RESULTS OF THE SIX METHODS.

Method TPR FPR
WiFi-ID 56.93% 21.94%
WifiU 61.86% 19.07%

Basic-CNN 47.87% 26.06%
AAE-only 65.35% 17.33%

Domain-adaptation-only 72.01% 14.00%
freeGait 92.29% 3.86%

shown in Tab. I. We select 6 of the 15 combinations of
human behaviors, traces, and speeds of these three volunteers
in the training data as source domains data (B1 tr1, B4 tr1,
B6 tr1, B5 tr2, S1 tr3, S3 tr3), i.e., with user labels, and
the remaining training data is used as target domains data,
i.e., without user labels, and all training data contains domain
labels. During the training process, both Domain-adaptation-
only and freeGait can train their respective models using data
with user labels and data without user labels, but Basic-CNN
and AAE-only just use data with user labels to train their
models. We then compare freeGait with the above baseline
methods.

We use True Positive Rate (TPR) and False Positive Rate
(FPR) to evaluate classification performance, where TPR =

TP
TP+FN , and FPR = FP

TN+FP , TP, TN, FP, and FN represent
the number of true positives, true negatives, false positives, and
false negatives. Tab. II shows the classification results of six
methods. As can be seen, both WiFi-ID [1] and WifiU [17]
exhibit significant accuracy degradation when gait features
are confused due to interference from non-gait behaviors.
The accuracy of the Base-CNN is extremely low because
it only uses less labeled data for training. AAE-only and
Domain-adaption-only improve some accuracy through data
augmentation and domain adaptation respectively, but there
is still a lot of room for improvement. Compared with these
techniques, freeGait can improve accuracy by at least 20%
and in the worst case 45%.

To more intuitively show the comparison results of freeGait
with other methods, we also provide the gait classification
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Fig. 15. The user prediction confusion matrices obtained after the
predicted data of three users pass through WiFi-ID and WifiU.
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Fig. 16. Visualization results of gait features after going through Basic-
CNN, DANN-only and freeGait.

confusion matrix, and the results are shown in Fig. 14 and
Fig. 15. From the results, compared to other schemes that
cannot accurately distinguish multiple users, freeGait can
achieve high classification accuracy for all users.

B. Visualization of Gait Feature

Our model aims to learn representations of gait features
that are independent of discontinuous human behaviors and
walking paths. To verify that the model has learned the
representation, we use t-SNE [55] to reduce the dimensionality
and display it in 2D space. Specifically, we select the data
of two human behaviors of two users from the data in the
target domain that does not carry user tags, i.e., four domain-
user pairs. Then, we randomly select several samples for
each domain-user pair and draw the learned representations of
these samples through Basic-CNN, DANN-only (i.e., Domain-
adaptation-only) and freeGait respectively. The results are
shown in Fig. 16, where different colors (orange and blue)
represent different users, and different shapes (circles and
triangles) represent different human behaviors. When Basic-
CNN is used to extract gait features, the gait features of two
users overlap. Although DANN-only can distinguish the gait
features of two users, these features are scattered and not
concentrated into two clusters. In addition, the gait features
extracted by freeGait are concentrated in two clusters, while
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Fig. 17. Classification results for different people and different numbers of people.
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Fig. 18. Classification accuracy for different behaviors, traces, speeds, and environments.
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Fig. 19. Impact of augmented data amount.

there is almost no overlap between different users. This proves
that the proposed model learns the target features.

C. Impact of People’s Number

The increase in the number of users and different users
affects the classification accuracy of gait features. To further
examine the performance of freeGait, we test freeGait on
different users and a larger number of users. Specifically,
we divide 20 volunteers into four different group sizes of 3,
4, 5, and 6 people. The confusion matrix for classification
is shown in Fig. 17. It can be seen that as the number of
people increases, freeGait can still achieve 70% classification
accuracy for each user, but the overall classification accuracy
decreases slightly, because the features of domains are also
gradually increasing. We plan to optimize our model in future
work to be able to predict more diverse users.

D. Impact of Different Behaviors, Traces and Speeds

Different human behaviors, walking paths, and walking
speeds all affect gait patterns. In order to evaluate the ro-
bustness of freeGait to these influencing factors, we divide
the users’ gait data into 15 groups according to domain
categories, and predict users’ IDs respectively (the source
domain data for training is the same as Section VI-A), the
accuracy is shown in Fig. 18. The results show that for the
six (behavior, speed, trace) including the source domains, the
users’ gait classification accuracy is above 81%, while for the
nine (behavior, speed, trace) that are all in the target domains,
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Fig. 20. Impact of source domains’ number.

the users’ gait classification accuracy still higher than 72%,
although it has declined. Therefore, freeGait remains robust to
different human behaviors, walking paths and walking speeds.

E. Impact of Different Environments

Different environments affect the collected CSI data. In
order to evaluate the robustness of freeGait to different en-
vironments, we divide the data into three groups according to
the three scenarios as shown in Fig. 11, and predict users’ IDs
respectively (the source domain data for training is the same
as Section VI-A). The results in Fig. 18(d) show that for the
three scenarios, the users’ gait classification accuracy is above
83%, thus freeGait remains robust to different environments.
It is worth noting that we evaluate freeGait in three scenarios
separately without predicting users’ IDs across environments,
which is beyond the scope of this paper.

F. Impact of Augmented Data Amount

We already know that augmented data can improve the
performance of freeGait. To analyze in detail the effect of
the amount of augmented data on the users’ gait classification
effect, we select three users in Scenario 1 for verification.
Specifically, we use pre-trained AAE-based data augmentation
models to generate augmented data that are 0 times, 2 times,
4 times, 8 times, and 16 times the amount of source domain
data, respectively. Then, we use these data to train freeGait
respectively, and the accuracy of users’ gait classification is
shown in Fig. 19. The results show that the classification
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Fig. 23. Detection accuracy of abnormal user
for different scenarios.

accuracy increases as the amount of augmented data increases.
However, when there is too much augmented data (16 times),
the classification accuracy decreases slightly. This may be
caused by excessive enhancement that makes the sample
distribution uneven.

G. Impact of Source Domains’ Number

Intuitively, the amount of source domains used for training
affects the accuracy of the model. To analyze the impact in
detail, we pre-train the deep learning model of freeGait and
predict users’ IDs with the number of source domains ranging
from 1 to 15. The result is shown in Fig. 20. It can be seen
that the users’ gait classification accuracy increases as the
number of source domains increases, and the classification
accuracy of freeGait is always higher than Basic-CNN with
the same number of source domains. A limited number of
source domains may result in overfitting to specific features
of those domains or underfitting, where the model fails to
learn sufficient patterns to generalize well to new data. This
can also lead to instability in the training process, as the
model may not have enough variability in the training data
to effectively capture the underlying patterns of human gait.
In practical scenarios where data is scarce, small sample sizes
can also make the model sensitive to noise or biases inherent
in the data. In real-world applications, users can choose an
appropriate number of source domains by considering the
balance between accuracy and training data collection cost.
When data is limited, techniques such as data augmentation
and transfer learning provide practical solutions to enhance
model performance and stability.

H. Impact of Sampling Rate

In real-world scenarios, CSI can be estimated during active
data communication. When data communication is inactive,
the sampling rate of CSI significantly decreases. To analyze
the impact of different sampling rates, we randomly sampled
data from the original 1000Hz to simulate cases with sampling
rates of 500Hz, 250Hz, 100Hz, 50Hz, and 20Hz. We then train
our models using the data with these lower sampling rates
and use them to predict user identities. The results, as shown
in Fig. 21, indicate that prediction accuracy does not decline
significantly from 1000Hz to 250Hz. However, there is a sharp
drop in accuracy below 100Hz. This decline occurs because
the frequency of human gait ranges from 10Hz to 70Hz. When
the sampling rate is too low, a substantial amount of valuable

frequency information is lost, leading to a significant reduction
in prediction accuracy.

I. Impact of Loss Function

In addition, we also verify the impact of the loss function
in our proposed model design, namely Lu, Lo, and Lt.
Specifically, we train the model for the following five cases
in the loss function: (La, Ld), (La, Lu, Ld), (La, Ld, Lo),
(La, Lu, Ld, Lo) and (La, Lu, Ld, Lo, Lt), and then use the
trained model to predict users. As shown in Fig. 22, the
prediction accuracy of users without the three constraints is
much lower than that with the three constraints. This shows
that it is not feasible to directly use the original DANN
network [49] to train our data, so freeGait is necessary.

J. Accuracy of Abnormal User Detection

Finally, we evaluate the performance of abnormal user
detection. First, for three different scenarios, we randomly
select four users to construct a legal user dataset, and one user
as an illegal user. Then, we train the model using the training
data of legal users, and predict the test data of legal users and
the data of illegal users. We use accuracy, False Alarm Rate
(FAR), and False Rejection Rate (FRR) to evaluate the results,
where FAR is defined as the ratio of illegal users classified as
legal users, and FRR is defined as the ratio of legal users
classified as illegal users. The results are shown in Fig. 23. In
all three scenarios, our abnormal user detection module can
achieve an accuracy of more than 85%, while FAR and FRR
are both less than 12%.

VII. DISCUSSIONS AND FUTURE WORK

Diverse real-world non-gait behaviors. In the real world,
human non-gait behaviors are far more diverse and complex
than the six behaviors we have defined. There are many similar
or unpredictable actions, such as falling, lying down, and
jumping, that extend beyond our initial scope. Verifying these
broader behaviors is crucial for the advancement of freeGait.
To address this, we plan to adopt an iterative model training
approach in future work, enabling us to continuously update
the non-gait behavior library and enhance freeGait’s adaptabil-
ity to a wider range of previously unseen human behaviors.
Furthermore, we aim to conduct a detailed analysis of various
human behaviors and develop metrics to evaluate non-gait
behaviors, providing deeper insights into how different non-
gait behaviors impact gait recognition systems.
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Specifically, we could define two dimensions: ”amplitude”
and ”complexity” to distinguish between large movements
(such as jumping or rapid gestures) and small, subtle motions
(like minor hand movements or slight posture shifts). Addi-
tionally, we envision designing a set of comprehensive metrics,
such as ”behavioral interference” and ”gait recognition error
rate” to quantify how various non-gait behaviors influence
the performance of the gait recognition system. These metrics
would allow us to gain deeper insights into the specific ways
different behaviors disrupt gait features, thereby providing
valuable guidance for future model improvements and non-
gait behavior classification. This approach will also support
the continuous expansion of our non-gait behavior library,
enhancing the system’s ability to adapt to previously unseen
behaviors.

Diverse scenarios and walking paths. This paper focuses
on addressing the core challenge of mitigating non-gait be-
haviors in WiFi-based gait recognition systems. To validate
the effectiveness of the proposed method, we conducted ex-
periments in controlled environments with three representative
walking paths. These paths were chosen because they reflect
common patterns in practical applications, such as hallways,
offices, and indoor monitoring scenarios, and provide a solid
foundation for evaluating the system. However, we acknowl-
edge that these controlled scenarios may not fully capture the
diversity and complexity of real-world environments. In future
work, we plan to expand our evaluation to include cluttered
spaces, dynamic settings with moving obstacles, and varied
environmental conditions to test the system’s robustness. Ad-
ditionally, we aim to refine the system to handle unconstrained
walking paths, allowing for more natural movement patterns
and improving its applicability to realistic scenarios.

Cross-environment gait recognition. In this paper, we do
not address the migration of the same user across different
environments, as our focus is on examining the impact of
human behaviors on gait recognition systems. However, in
real-world scenarios, cross-environment gait recognition is
indeed a critical research challenge due to environmental
complexity. We plan to explore this area in future work.
Specifically, we aim to accurately distinguish between differ-
ent or even similar environments, treating the environment as
a domain, so that cross-domain techniques can be applied to
achieve cross-environment gait recognition. Additionally, we
intend to develop a WiFi-based gait recognition system that
simultaneously considers factors such as human behaviors,
trajectories, and environmental conditions, facilitating the real-
world deployment of such solutions.

Multiple users identification. The solutions proposed so
far are primarily focused on the gait recognition of a single
individual. However, given the prevalence of multi-person
scenarios in real-world applications, recognizing the gaits of
multiple users simultaneously is of great importance. Due to
the nature of WiFi signals, traditional model-driven approaches
struggle to effectively separate the gait data of different users,
particularly when two users have similar walking frequencies.
Fortunately, recent studies have demonstrated that data-driven
approaches perform well in estimating WiFi sensing data
with multiple frequency aliasing [56], [57]. Inspired by these

advancements, we can incorporate simulated data generation
based on electromagnetic field models or diffusion models
into the data augmentation module, thereby enabling the
recognition of multiple users simultaneously.

Data of different WiFi NICs. In this paper, our gait dataset
is constructed using an Intel 5300 NIC, leveraging the Linux
802.11n CSI Tool [30]. However, there are other tools available
that can collect CSI from various WiFi NICs for diverse
sensing tasks, such as the Atheros CSI Tool [31], Nexmon
CSI Extractor [32], and PicoScenes [58]. Additionally, some
researchers are dedicated to building comprehensive WiFi
sensing datasets using different WiFi devices [59]–[61]. To
further advance our system for practical applications, it is
essential to collect CSI data and evaluate our model across
different WiFi NICs and heterogeneous devices. In future
work, we plan to continue gathering gait data using various
WiFi NICs.

VIII. RELATED WORK

A. WiFi-based Gait Recognition Systems

Compared to vision-based [4], acoustic signal-based [7],
and wearable device-based [9] gait recognition technologies,
WiFi has garnered significant attention recently due to its
ubiquity, non-contact nature, and non-intrusive privacy advan-
tages. Numerous systems have been developed that accurately
recognize human gait using commercial WiFi devices. How-
ever, most of these systems require subjects to walk along
specific paths [1], [17], [19], [62]–[64], and some combine
daily activity features to enhance accuracy [65], [66]. These
approaches either impose strict constraints on user behavior
or necessitate the collection of large amounts of data. Recent
studies have explored gait recognition methods that are inde-
pendent of walking direction and path, but these still require
data from multiple WiFi transceivers and necessitate that the
subject walks normally and continuously within a specific
area [2], [18], [67]. In contrast, freeGait is designed to handle
a variety of discontinuous behaviors that may accompany
a user’s walking. It accurately identifies the user’s gait by
collecting only a small amount of data from a pair of randomly
placed WiFi transceivers, while also relaxing the constraints
on the user’s walking requirements.

B. Domain adaptation for WiFi sensing

WiFi signals are highly sensitive to their surrounding envi-
ronment. Variations in the environment, different individuals,
and diverse actions can all alter the reflected signal informa-
tion, which in turn affects the performance of WiFi-based
sensing systems. Collecting sufficient data to address these
variations is both costly and impractical. To mitigate this issue,
domain adaptive learning enhances the learning performance
in data-scarce target domains by minimizing the distribution
differences between the source and target domains [49]. As a
result, this approach has increasingly been applied in WiFi
sensing systems, including applications such as fingerprint
localization [22], [68], object recognition [27], [69], activity
recognition [23], [70], [71], gesture recognition [24]–[26],
and human identification [19]. However, existing domain
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adaptation works in WiFi sensing mainly target challenges
related to changes in environment or device setup. While these
approaches achieve robustness in their respective tasks, they
do not address the unique challenge of behavioral diversity
in gait recognition. In contrast, our work introduces a novel
approach to align the posterior distribution to mitigate classi-
fication ambiguity caused by non-gait behaviors, significantly
interfering with gait feature extraction. In addition, in this
paper, we integrate the concept of domain adaptation with
data augmentation to enable our system to adapt to the various
non-periodic or discontinuous behaviors that may accompany
a user’s walking. This approach allows the WiFi-based gait
recognition system to maintain accuracy even when confronted
with non-gait behaviors.

IX. CONCLUSION

In this paper, we present freeGait, a WiFi-based gait recog-
nition system designed to remain robust against non-periodic
and discontinuous user behaviors as well as varying walking
paths. freeGait introduces a novel approach to eliminate CSI
noise, enabling the extraction of fine-grained spectrograms.
It employs a deep learning framework that integrates data
augmentation and domain adaptation to address inconsisten-
cies in gait patterns resulting from diverse user behaviors
and paths. To ensure domain adaptation effectively addresses
our specific challenges, we align the posterior distributions
between the source and target domains and constrain the
conditional distribution of the target domains to optimize the
model. For data augmentation, we tackle the issue of aliasing
in reconstructed samples by utilizing supervised learning,
which guides the decoder to generate data highly relevant to
the user. By leveraging a large volume of unlabeled data from a
pair of WiFi transceivers, freeGait enables the model to learn
user gait features that are independent of human behaviors
and paths, relying on only a small amount of labeled data.
Our experiments, conducted with 20 volunteers across three
real-world scenarios, demonstrate that freeGait outperforms
existing methods in handling complex unlabeled human behav-
iors and walking paths. This capability to mitigate the impact
of non-gait behaviors significantly enhances the potential for
practical deployment of WiFi-based gait recognition systems.
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