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Earphones have become a popular voice input and interaction device. However, airborne speech is susceptible to ambient 
noise, making it necessary to improve the quality and intelligibility of speech on earphones in noisy conditions. As the dual-
microphone structure (i.e., outer and in-ear microphones) has been widely adopted in earphones (especially ANC earphones), 
we design EarSpeech which exploits in-ear acoustic sensory as the complementary modality to enable airborne speech 
enhancement. The key idea of EarSpeech is that in-ear speech is less sensitive to ambient noise and exhibits a correlation 
with airborne speech. However, due to the occlusion effect, in-ear speech has limited bandwidth, making it challenging to 
directly correlate with full-band airborne speech. Therefore, we exploit the occlusion effect to carry out theoretical modeling 
and quantitative analysis of this cross-channel correlation and study how to leverage such cross-channel correlation for 
speech enhancement. Specifically, we design a series of methodologies including data augmentation, deep learning-based 
fusion, and noise mixture scheme, to improve the generalization, effectiveness, and robustness of EarSpeech, respectively. 
Lastly, we conduct real-world experiments to evaluate the performance of our system. Specifically, EarSpeech achieves an 
average improvement ratio of 27.23% and 13.92% in terms of PESQ and STOI, respectively, and significantly improves SI-SDR 
by 8.91 dB. Benefiting from data augmentation, EarSpeech can achieve comparable performance with a small-scale dataset 
that is 40 times less than the original dataset. In addition, we validate the generalization of different users, speech content, 
and language types, respectively, as well as robustness in the real world via comprehensive experiments. The audio demo of 
EarSpeech is available on https://github.com/EarSpeech/earspeech.github.io/.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools.

Additional Key Words and Phrases: Speech Enhancement, Earphone-based Sensing and Computing, In-ear Acoustic Sensing, 
Occlusion Effect.

Authors’ addresses: Feiyu Han, Nanjing University of Information Science and Technology, Nanjing, China, 210044 and University of Science
and Technology of China, Hefei, China, 230026, fyhan@mail.ustc.edu.cn; Panlong Yang, Nanjing University of Information Science and
Technology, Nanjing, China, 210044, plyang@nuist.edu.cn; You Zuo, University of Science and Technology of China, Hefei, China, 230026,
leftright@mail.ustc.edu.cn; Fei Shang, University of Science and Technology of China, Hefei, China, 230026, shf_1998@outlook.com; Fenglei Xu,
Suzhou University of Science and Technology, Jiangsu Industrial Intelligent and Low-carbon Technology Engineering Center, Suzhou, China,
215009, xufl@mail.usts.edu.cn; Xiang-Yang Li, University of Science and Technology of China, Hefei, China, 230026, xiangyangli@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. 
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from 
permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2474-9567/2024/9-ART104 
https://doi.org/10.1145/3678594

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 104. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0002-7555-1232
HTTPS://ORCID.ORG/0000-0003-1057-2793
HTTPS://ORCID.ORG/0009-0004-0769-2924
HTTPS://ORCID.ORG/0000-0002-5495-8869
HTTPS://ORCID.ORG/0000-0002-5454-157X
HTTPS://ORCID.ORG/0000-0002-6070-6625
https://github.com/EarSpeech/earspeech.github.io/
https://orcid.org/0000-0002-7555-1232
https://orcid.org/0000-0003-1057-2793
https://orcid.org/0009-0004-0769-2924
https://orcid.org/0000-0002-5495-8869
https://orcid.org/0000-0002-5454-157X
https://orcid.org/0000-0002-6070-6625
https://doi.org/10.1145/3678594
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678594&domain=pdf&date_stamp=2024-09-09


104:2 • Han et al.

Fig. 1. EarSpeech is an earphone-based speech enhancement solution that utilizes outer and in-ear microphones 
on a single earphone to capture dual-channel speech signals and exploits the correlation between different 
acoustic channels for noise removal.
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1 INTRODUCTION

The increasing popularity of smart devices such as smartphones and tablets creates a high demand for earphones 
to provide interaction and entertainment for users. According to a market report [36], the market size of earphones 
and headphones is expected to reach 163 billion by 2030, showing a significant growth trend. However, a key 
challenge arises when the earphones are used as a voice input interface between users and smart devices 
(e.g., making a call with earphones). In particular, the quality of recorded speech drops dramatically in noisy 
environments, negatively impacting the user experience. Thus, in recent years, academic researchers have shown 
substantial interest in speech enhancement (SE) on earphones which aims to separate the target speech from 
external interference and noise.

Compared with the conventional denoising methods [1, 12, 24], audio-based deep learning technologies [3, 15, 
45, 46] that rely on a large training speech corpus have shown a greater performance improvement in the speech 
enhancement task. However, the performance of such technologies is significantly affected by the size and quality 
of the training dataset, causing poor generalization in practice. Recently, multi-modality technologies performed 
speech enhancement through the correlation between audio modality and another modality, like video-audio [32], 
mmWave-audio [30, 41, 63], and ultrasound-audio [11, 55, 65], superior to audio-based enhancement technologies. 
Nevertheless, such methods require the integration of additional hardware (e.g., wireless antennas or cameras), 
which cannot be adapted to earphones with small sizes and restraint resources. Some technologies have started 
to explore speech enhancement for earphones. However, they mainly rely on special sensors like physics-contact 
bone conduction transducer [60] and high-sampling accelerometer [23], decreasing the adaptability to most 
earphones. Chatterjee et al. [8] leverage the cooperation of binaural earphones for spatial filtering, which cannot 
adapt to single-earphone usage scenarios (e.g., working with one earphone and charging the other).
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To solve the above limitations, we design EarSpeech that leverages outer and inner (i.e., in-ear) microphones
on the same earphone for speech enhancement. Nowadays, with in-ear microphones being widely embedded
into earphones (especially ANC earphones), the in-ear acoustic modality boosts the capacity of sensing on
earphones [13, 21, 22, 31], which could provide an additional sensory way to enable speech enhancement. As
shown in Fig. 1, for the dual-microphone structure on a single earphone, the outer microphone can capture sound
vibrations traveling over the air, while the in-ear microphone can capture sound vibrations propagating along the
body and ear canal. To avoid ambiguity, we refer to sound vibrations captured by the outer microphone as airborne
speech and sound vibrations captured by the in-ear microphone as in-ear speech. The goal of EarSpeech is to
exploit the correlation between different acoustic channels to improve the quality and intelligibility of airborne
speech even in low SNR conditions. The key insight of EarSpeech is that the airborne speech, which is sensitive
to ambient noise, exhibits a unique and complex correlation with the in-ear speech, which is less susceptible
to ambient noise. Furthermore, during developing EarSpeech, we need to address the following key technical
challenges:

• (i) The impact of correlation between dual-channel signals with heterogeneous structures on the final speech
enhancement task remains unclear. Different from the common air-conducted channel, the in-ear channel
consists of two pathways. During propagating along the in-ear channel, sound vibrations are first attenuated
by bone conduction and then enhanced by the occlusion effect in the ear canal. The differences in propa-
gating channels make airborne and in-ear speech have different acoustic characteristics, including spectral
structure, noise sensitivity, and intelligibility. The correlation between heterogeneous dual-channel signals
has not been well studied, including theoretical analysis and experimental validation, which prevents us
from understanding the effect of such cross-channel correlation on speech enhancement.

• (ii) A sufficient dataset of paired airborne speech and in-ear speech with labels is still lacking. Existing public
large-scale speech corpora are built on airborne speech (i.e., speech over the air) like LibriSpeech [43],
TIMIT [17], and Common Voice [2], but there are no corresponding public in-ear speech corpora. The
quality and quantity of the dual-speech dataset are important in data analysis and model building and
are closely related to the effectiveness and generalization of speech enhancement. An intuitive way is to
manually collect airborne speech samples and corresponding in-ear speech samples in the lab environment
to compose a large-scale dual-channel speech corpus. However, it requires extensive collection and labeling
efforts, which is not feasible for large-scale dataset construction.

• (iii) The heterogeneity in speech signals caused by diversities (e.g., different channels and speakers) makes
it difficult to extract effective and generalized features to represent the correlation of dual-channel speech.
Considering the differences in spectral structures of the dual-channel speech, EarSpeech needs to capture
representative features that contribute to the speech enhancement task from each acoustic channel and
effectively fuse them based on the correlation. In addition, the pronunciation habits and the structure of the
body (such as vocal organs, skull, and ear canal) vary from person to person, which affects the consistency
of the correlation between dual-channel speech. Furthermore, the noise sensitivity of the in-ear channel
is also different from that of the airborne channel, affecting the robustness of our system in real-world
environments. Thus, addressing the impact of these factors to improve the system’s generalization and
robustness continues to pose a challenge.

To address the above challenges, we utilize an electro-acoustic (EA) model to explain the impact of the
occlusion effect on the in-ear channel and analyze the characteristics of in-ear speech. Then, we integrate a
sound propagation model to theoretically analyze the cross-channel correlation based on the occlusion effect.
Based on such cross-channel correlation, we design a data augmentation method to enrich the dual-channel
speech corpus with an existing large-scale airborne speech corpus. Specifically, we design a spectral mapping
function, named transfer function, to represent the correlation between different acoustic channels. Then, due

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 104. Publication date: September 2024.



104:4 • Han et al.

Fig. 2. Illustration of sound propaga-

tion in airborne and in-ear channels.

Fig. 3. Spectrograms of 5-second airborne speech signals (lower) and

corresponding in-ear speech signals (upper).

to the diversity of individuals, we design a GMM-based transfer function estimation method to improve the
generalization of data augmentation. Lastly, we design a Dual-Channel Speech Enhancement (DC-SE) model
based on a two-branch deep learning network to effectively extract features of dual-channel speech and fuse
them for speech enhancement. In addition, to improve the robustness of our system in real-world environments,
we design a novel noise mixture scheme that simulates the impact of ambient noise on the in-ear channel, to
build the training dataset.
Compared with other SE technologies on earphones, EarSpeech has the following advantages. (1) Wide

availability. EarSpeech only leverages two onboard microphones on a single earphone without hardware
modification, which allows our system to be applied to most daily scenarios including single-earphone usage.
(2) Data efficiency. Benefiting from the data augmentation based on the occlusion effect, the DC-SE model can
achieve excellent performance through fine-tuning with small-scale real speech samples (about 1/40 of the
original dataset collected in the real world), greatly reducing collection costs and achieving high data efficiency.
(3) High Generalization and Robustness. EarSpeech has been validated to achieve excellent performance among
different users, speech contents, and language types. In addition, with the different impact factors, EarSpeech can
significantly improve the quality and intelligibility of noisy speech in daily scenarios.
We highlight the contributions of our work as follows:

• We design an earphone-based airborne speech enhancement, named EarSpeech, which takes advantage of
the dual-microphone structure on a single earphone with less hardware modification. EarSpeech exploits
the correlation between in-ear speech and airborne speech to improve the quality and intelligibility of
airborne speech.

• From theoretical analysis and experimental validation, we study the correlation between dual-channel
speech signals based on the occlusion effect. Furthermore, based on the analyzed occlusion effect-based cor-
relation, we design a GMM-based data augmentation method and deep learning-based speech enhancement
model for effective, robust, data-efficient, and generalized speech enhancement.

• We conduct comprehensive experiments to evaluate our system in terms of effectiveness (improvement
of speech quality and intelligibility), generalization (user groups, speech contents, and language types),
robustness in the real world, and data efficiency.
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2 BACKGROUND AND PRELIMINARY

2.1 Background: Speech Acquisition on Earphones

Nowadays, most earphones, especially noise-canceling earphones, are equipped with inward-facing microphones
(refer to in-ear microphones) and outward-facing microphones (refer to outer microphones). As shown in the
orange box of Fig. 2, the outer microphone is mounted on the outside of the earphone, and the in-ear microphone
is mounted on the inside of the earphone. Fig. 2 illustrates sound propagation in airborne and in-ear channels.
When a participant wears earphones to speak (e.g., making a call and interacting with a voice assistant), sound
vibrations propagate over the air and are captured by the outer microphone. In addition, sound vibrations also
propagate to the ear canal via the skull and can be captured by the in-ear microphone. In our work, we refer to
the sound vibrations captured by the outer microphone as airborne speech and sound vibrations captured by the
in-ear microphone as in-ear speech.
The in-ear channel consists of two components, i.e., the skull and the ear canal. Firstly, sound vibrations

generated from the sound source propagate along the skull. When these bone-conducted sound vibrations
(also known as BC speech) reach the eardrum, they will enter the ear canal and continue to spread. If the
ear canal opening is obstructed, these bone-conducted sound vibrations are trapped within the ear canal and
bounce back and forth in the obstructed canal [14]. Such obstruction increases the acoustic impedance of the ear
canal [6, 54], causing the low-frequency components (mainly below 1 KHz) of sound vibrations to be amplified.
This phenomenon is known as the occlusion effect [6, 54].

We need to claim that in-ear speech is different from bone-conducted (BC) speech. Although the channels of
in-ear speech and bone-conducted speech partially overlap, in-ear speech still experiences the occlusion effect,
resulting in a distinct spectral structure that sets it apart from bone-conducted speech. In addition, the acquisition
of BC speech requires a special bone conduction transducer that needs to be attached to the head or face. However,
in-ear speech is sound vibrations in the ear canal and can be detected by a ubiquitous microphone.

2.2 Characteristics of Dual-channel Speech

We compare the in-ear channel with the airborne channel in terms of spectral structure, speech intelligibility,
and ambient noise resistance, to help readers understand their characteristics.

2.2.1 Spectral Structure Difference. Fig. 3 illustrates the spectrogram comparison of in-ear speech (upper)
and airborne speech (lower), showing significantly different spectral structures. Intuitively, airborne speech
exhibits harmonic and formant structures in a wider frequency range (about 0-6 KHz). However, the most spectral
power and harmonic structures of in-ear speech are concentrated below 2 KHz, while almost no obvious harmonic
and formant structures can be found in the high-frequency components. To give a quantitative analysis, we
calculate the cumulative distribution of spectral power (i.e., 𝑃𝑜𝑤𝑒𝑟𝑐𝑑 𝑓 ), as shown in Fig. 4. Specifically, for in-ear
speech, about 96% of overall spectral power is distributed in the frequency range below 1 kHz, while for airborne
speech, only about 60% of overall spectral power is distributed in the frequency range below 1 kHz. During
speaking-induced vibrations propagating along the head skull, the higher frequency components will suffer
from more severe attenuation [53]. That is why high-frequency components of in-ear speech are different from
airborne speech. In addition, the low-frequency components of in-ear speech are enhanced by the occlusion
effect [6, 54], as introduced in Sec. 2.1. That is why most spectral power of in-ear speech is concentrated below 1
KHz.

2.2.2 Speech Intelligibility. Speech intelligibility refers to how comprehensible speech is in communication,
which is related to high-frequency acoustic features of consonants and vowels [48], such as vowel space area,
mean amount of formant movement, harmonic structure, and spectral centroid. Due to the occlusion effect,
most of the spectral power of in-ear speech is mainly distributed below 1 KHz. The distortion in high-frequency
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Fig. 4. Cumulative distribution of spectral power.
Fig. 5. Speech intelligibility study.

(a)Noise SPL is 30.45 dB. (b)Noise SPL is 52.25 dB. (c)Noise SPL is 61.96 dB.

Fig. 6. Noise resistance study of in-ear speech and airborne speech.

components will affect the intelligibility of in-ear speech. Next, we use speech-to-text recognition accuracy as a
measure metric to compare the intelligibility between airborne speech and in-ear speech. Specifically, we require
five participants to naturally speak 26 letters (i.e., A-Z) and 5 sentences at a normal sound pressure level (SPL) in
a quiet room. Then we use Notta [38], a popular online transcription platform, to convert airborne speech and
in-ear speech into text separately. As shown in Fig. 5, the WER (word error rate) and SER (sentence error rate) of
in-ear speech are respectively 54.85% and 93.33%, while the WER and SER of airborne speech are only 1.32% and
6.67, respectively. It indicates that in-ear speech has poor intelligibility and is difficult to meet the requirements
of daily speech communication.

2.2.3 Ambient Noise Impact. In this section, we study the impact of ambient noise on two speech channels.
The participant is required to wear our prototype and speak several sentences in a quiet meeting room with little
fan noise (30.45 dB on average), a student office with conversation and music noise (52.25 dB on average), and an
outside street with vehicle noise (61.96 dB on average). Fig. 6 illustrates airborne and in-ear speech collected in
different environments. As the noise sound pressure level increases, speech over the air (shown in the orange
dotted box) is gradually buried by ambient noise. Especially, in the outside street with a noise SPL of 61.96 dB, we
can barely see the airborne speech waveform, while the in-ear speech waveform is still obvious. These results
indicate that ambient noise has a subtle impact on in-ear speech. The strong noise resistance of ambient noise
comes from two aspects. First, ambient noise widely exists in the airborne channel and will not affect in-ear
speech propagating along the in-body channel. Second, benefiting from the special in-ear structure design [35, 49],
ear canals fit well with earphones, relatively isolating ear canals from external environments and preventing the
entry of ambient noise.
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Fig. 7. The framework overview of EarSpeech.

2.2.4 Key Insight. Through the above analysis, there are three observations as follows:
• Airborne and in-ear speech show distinct spectral structures due to differences in propagating channels.
The low-frequency components of in-ear speech are amplified by the occlusion effect, while high-frequency
components suffer from severe attenuation.

• Compared with the wide bandwidth (about 6-8 KHz) of airborne speech, the narrow bandwidth (about 1-2
KHz) of in-ear speech has relatively lower intelligibility due to the loss of high-frequency information.

• Benefiting from the in-body channel and microphone’s position in earphones, in-ear speech exhibits higher
resistance to ambient noise than airborne speech.

Compared with airborne speech, in-ear speech has a stronger capability of noise resistance but weaker
intelligibility. Importantly, most commercial devices only support voice input from outer microphones instead of
in-ear microphones. Hence, EarSpeech aims to leverage the in-ear speech as an auxiliary approach to improve the
quality of airborne speech in low SNR conditions.

3 SYSTEM OVERVIEW

Fig.7 illustrates the overview framework of EarSpeech, consisting of three key modules: signal pre-processing,
data augmentation, and dual-channel speech enhancement model (also referred to as DC-SE model). In particular,
we highlight two processes (i.e., training process and enhancement process) in our system. In the training process,
to improve the generalization and performance of the model, EarSpeech first pre-trains the DC-SE model using
a large-scale synthetic dual-channel dataset generated from data augmentation. Then, EarSpeech utilizes a
small-scale dual-channel speech dataset collected in real environments to fine-tune the pre-trained DC-SE model.
In the enhancement process, a pair of noisy airborne speech and corresponding in-ear speech are pre-processed
and then fed into the fine-tuned DC-SE model for airborne speech enhancement. Next, we introduce the main
function of each module separately.

(i) GMM-based Augmentation for In-ear Speech Corpus Enrichment (Section §4). As for the problem
of lacking paired training data, we design a GMM-based data augmentation method to generate/synthesize in-ear
speech samples from existing public airborne speech corpus based on the cross-channel correlation. Building a
large-scale synthetic in-ear speech corpus and corresponding airborne speech corpus can help our deep-learning
model effectively improve the learning capability of complex relationships between in-ear and airborne speech.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 104. Publication date: September 2024.



104:8 • Han et al.

(ii) Pipeline of Pre-processing (Section §5.1). Since low-frequency components of in-ear speech are easily
influenced by motion artifacts [16, 22], EarSpeech first removes unnecessary noise to obtain clean in-ear speech.
Then, EarSpeech downsamples speech signals of each channel to improve the computational efficiency and
performs voice activity detection to remove silent frames. Lastly, dual-channel speech signals are transformed
from the time domain (T domain) to the time-frequency domain (T-F domain) where the target speech and noise
show a more distinct distribution difference.

(iii) Dual-channel Speech Enhancement Model (Section §5.2). After signal pre-processing, dual-channel
amplitude spectrograms are fed into the DC-SE model for speech enhancement. The DC-SE model consists of a
Feature Embedding sub-network, an Amplitude Mask Prediction sub-network, an Auxiliary Decoder sub-network,
and an Airborne Speech Reconstruction sub-network. The Feature Embedding sub-network aims to transform two
input amplitude spectrograms into the same feature space and extracts high-level feature maps to represent the
cross-channel correlation. After that, EarSpeech concatenates outputs of the Feature Embedding sub-network as
a feature map along the channel dimension. The concatenated feature map passes through the Amplitude Mask
Prediction sub-network to generate an ideal ratio mask (IRM) that represents the ratio between clean and noisy
spectrograms. Enhanced airborne amplitude spectrogram is calculated by the element-wise multiplication between
IRM and noisy airborne amplitude spectrogram. Lastly, Airborne Speech Reconstruction converts T-F domain
representations into T domain representations for speech construction. It should be particularly emphasized that
Auxiliary Decoder helps the DC-SE model to learn the cross-channel correlation only in the training process and
doesn’t participate in the speech enhancement process.

(a)Open case. (b)Occluded case.

Fig. 8. Leveraging the EA model to analyze the correlation between dual-channel speech. An Electro-acoustic

(EA) model of (a) the open ear canal and (b) the occluded ear canal.

4 DATA AUGMENTATION VIA OCCLUSION EFFECT

In this section, we introduce how to exploit the correlation between in-ear and airborne speech for data augmen-
tation to tackle the challenge of lacking paired training data. We first theoretically analyze the cross-channel
correlation based on channel differences induced by the occlusion effect (see Sec. 4.1). Then, we propose the
transfer function to represent the occlusion effect-based correlation and explore the characteristics of the transfer
function by experimental validation (see Sec. 4.2). Based on that, we design an efficient GMM-based augmentation
method to synthesize paired in-ear speech samples with a large-scale airborne speech corpus (see Sec. 4.3) and
validate the effectiveness of our designed augmentation method (see Sec. 4.4).
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4.1 Transfer Function: OE-based Correlation Analysis

Occlusion effect (OE) significantly enhances low-frequency (mainly below 1 KHz) components of in-ear speech [6,
54]. The fundamental mechanism of occlusion effect is the acoustic impedance of the ear canal increases caused
by blocking the ear canal entrance. In our work, we leverage an electro-acoustic (EA) model proposed in [6, 7]
to help us understand the occlusion effect. Based on the EA model, we theoretically analyze the impact of the
occlusion effect on in-ear speech and elaborate on the correlation between in-ear speech and airborne speech.
Fig. 8 presents an EA model of the opening and occluded ear canal. In the EA model, the vibration of the ear canal
wall induced by speaking is considered a sound source. The ear canal is divided into two spaces: downstream
space (i.e., sound source to eardrum ) and upstream space (i.e., sound source to ear canal entrance). As for opening
ear canal case, the acoustic impedance of ear canal 𝑍𝑜𝑝𝑒𝑛

𝐸𝐶
can be expressed as:

𝑍
𝑜𝑝𝑒𝑛

𝐸𝐶
= ( 𝑗𝜔𝐶𝐸𝑑 + 𝑗𝜔𝐶𝑑 + ( 𝑗𝜔𝐿𝑢 + 𝑗𝜔𝐿𝑒𝑛𝑣)−1)−1

=
𝑗𝜔 (𝐿𝑢 + 𝐿𝑒𝑛𝑣)

1 − 𝜔2 (𝐶𝐸𝑑 +𝐶𝑑 ) (𝐿𝑢 + 𝐿𝑒𝑛𝑣)
(1)

where 𝐶𝐸𝑑 , 𝐶𝑑 , 𝐿𝑢 , and 𝐿𝑒𝑛𝑣 denote the acoustic compliance of the eardrum, the acoustic compliance of the
downstream space, the acoustic mass of the opening upstream space, and the acoustic mass of the external
environment, respectively. As for the occluded ear canal case, the acoustic impedance of ear canal 𝑍𝑜𝑐𝑐𝑙

𝐸𝐶
can be

expressed as:

𝑍𝑜𝑐𝑐𝑙
𝐸𝐶 = ( 𝑗𝜔𝐶𝐸𝑑 + 𝑗𝜔𝐶𝑑 + 𝑗𝜔𝐶𝑢)−1 (2)

where𝐶𝑢 denotes the acoustic compliance of the occluded upstream space. Hence, the occlusion effect 𝐹𝑂𝐸 can be
represented as the ratio of the acoustic pressure of occluded ear canal 𝑃𝑜𝑐𝑐𝑙 and the acoustic pressure of opening
ear canal 𝑃𝑜𝑝𝑒𝑛 :

𝐹𝑂𝐸 = 𝑃𝑜𝑐𝑐𝑙/𝑃𝑜𝑝𝑒𝑛 = 𝑞 ∗ 𝑍𝑜𝑐𝑐𝑙
𝐸𝐶 /𝑞 ∗ 𝑍𝑜𝑝𝑒𝑛

𝐸𝐶

=
𝜔2 (𝐶𝐸𝑑 +𝐶𝑑 ) (𝐿𝑢 + 𝐿𝑒𝑛𝑣) − 1
𝜔2 (𝐶𝐸𝑑 +𝐶𝑑 +𝐶𝑢) (𝐿𝑢 + 𝐿𝑒𝑛𝑣)

(3)

where 𝑞 denotes the volume velocity at the ear canal. The aforementioned acoustic compliances and masses are
determined by the geometry of the ear canal (e.g., radius and length) and environmental factors [6]. Thus, Eq. 3 is
simplified as follows:

𝐹𝑂𝐸 (𝑓 ) = Γ − 1
(2𝜋 𝑓 )2𝜒 (4)

where𝜔 = 2𝜋 𝑓 , Γ =
(𝐶𝐸𝑑+𝐶𝑑 )

(𝐶𝐸𝑑+𝐶𝑑+𝐶𝑢 ) , and 𝜒 = (𝐶𝐸𝑑 +𝐶𝑑 +𝐶𝑢) (𝐿𝑢 +𝐿𝑒𝑛𝑣). For the speech 𝑠 (𝑓 ) produced by vocalization
organs, it will propagate along two channels: air and bone. In our work, we define the transfer function as the
ratio of in-ear speech 𝑠𝑖𝑒 (𝑓 ) to airborne 𝑠𝑎𝑖𝑟 (𝑓 ) speech, which is expressed as follows:

𝐹𝑡 𝑓 =
𝑠𝑖𝑒 (𝑓 )
𝑠𝑎𝑖𝑟 (𝑓 )

=
𝐹𝑂𝐸 (𝑓 ) ∗ 𝐻𝑏𝑜𝑛𝑒 (𝑓 ) ∗HH𝑠 (𝑓 )

𝐻𝑎𝑖𝑟 ∗HH𝑠 (𝑓 ) (5)

where 𝐻𝑎𝑖𝑟 and 𝐻𝑏𝑜𝑛𝑒 are frequency-dependent attenuation function, respectively. In general, 𝐻𝑎𝑖𝑟 is related to
the airborne medium and can be considered as a constant. 𝐻𝑏𝑜𝑛𝑒 (𝑓 ) is related to the structure of the skull, which
varies from person to person.
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Fig. 9. Transfer function measurements in the frequency range below 2000 Hz.

4.2 Measurement of Transfer Function

Since 𝐹𝑂𝐸 (𝑓 ) and 𝐻𝑏𝑜𝑛𝑒 (𝑓 ) are associated with the individual as introduced in Sec.4.1, we use dual-channel
speech collected from four participants (users) to explore the diversity of transfer function. Each user is required
to wear earphones with dual microphones and speak for 2 minutes. Then we split the 2-minute speech into 24
5-second speech segments. For each speech segment, we calculate the spectrograms of in-ear speech 𝑆𝑖𝑒 and
air-conducted speech 𝑆𝑎𝑖𝑟 using the Short-Time Fourier Transform with a hamming window of 25 ms, an overlap
length of 20 ms, and a FFT length of 512 points. To eliminate the impact of individual phonemes [19, 20], we
accumulate each time point at the frequency bin 𝑓 and calculate the transfer function 𝐹𝑡 𝑓 (𝑓 ) as following:

𝐹𝑡 𝑓 (𝑓 ) =
∑𝑇

𝑡 𝑆𝑖𝑒 (𝑡, 𝑓 )∑𝑇
𝑡 𝑆𝑎𝑖𝑟 (𝑡, 𝑓 )

(6)

As introduced in the previous analysis, the occlusion effect only enhances the low-frequency components of
speech. Thus, we mainly focus on the transfer function in the frequency range below 2000 Hz. The transfer
function measurement of four users is shown in Fig. 9. Combining theoretical analysis and experimental validation,
we can conclude the following characteristics of the transfer function. (i) The transfer function varies from person
to person due to the unique body-physics structure of the individual. (ii) Despite the diversity of individuals’
transfer functions, they still follow the same underlying variation pattern. As shown in Fig. 9, the transfer function
shows an exponential decay pattern in the frequency range below 400 Hz. As the frequency increases, especially
above 600 Hz, the transfer function becomes approximately stable. In addition, we can find that the transfer
functions of different users exhibit significant differences in the frequency range between 200-600 Hz and only
subtle differences in the frequency range above 800 Hz.

4.3 GMM-based Transfer Function Estimation

Intuitively, if we estimate the transfer function 𝐹𝑡 𝑓 , we can synthesize the in-ear speech 𝑆𝑖𝑒 by calculating the
product of 𝐹𝑡 𝑓 and 𝑆𝑎𝑖𝑟 . In other words, we can derive 𝑆𝑎𝑖𝑟 from the public airborne speech dataset and generate
the large-scale in-ear speech dataset with the help of the transfer function. However, as illustrated in Fig. 9, the
diversity of transfer functions makes it difficult to directly estimate the transfer function by hard mapping.
In our work, we consider airborne speech as the source domain and in-ear speech as the target domain. To

improve the generalization, a Gaussian mixture model is established to present the joint distribution of source
and target domains, which can accurately represent the correlation between different domains via probability
distribution. We denote the source and target feature vectors at frame 𝑡 by 𝑋𝑡 and 𝑌𝑡 , respectively. The joint
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(a)Ground truth of in-ear speech.
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(b) Synthetic in-ear speech.

Fig. 10. Spectrogram comparison between (a) ground truth of in-ear speech and (b) synthetic in-ear speech.

distribution function is a combination of𝑀 normal distributions, which is expressed as follows:

𝑃 (𝑋𝑡 , 𝑌𝑡 |𝜆) =
𝑀∑︁

𝑚=1
𝜔𝑚N(𝑋𝑡 , 𝑌𝑡 ;Ψ𝑚, Σ𝑚) (7)

where 𝜆 denotes the parameters set of the joint distribution function. Ψ𝑚 and Σ𝑚 denote the mean vector and
covariance matrix of the𝑚-th component and are expressed as follows:

Ψ𝑚 =

[
Ψ𝑥
𝑚

Ψ
𝑦
𝑚

]
, Σ𝑚 =

[
Σ𝑥𝑥𝑚 Σ

𝑥𝑦
𝑚

Σ
𝑦𝑥
𝑚 Σ

𝑦𝑦
𝑚

]
(8)

We use the EM algorithm to train the joint distribution function and use DTW to align source and target feature
vectors [57]. After training, we can calculate the predicted target feature vectors 𝑌 by maximizing the following
conditional probability function:

𝑌𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃 (𝑌𝑡 |𝑋𝑡 , 𝜆) =
𝑀∑︁

𝑚=1
𝑃 (𝑚 |𝑋𝑡 , 𝜆)𝑃 (𝑌𝑡 |𝑋𝑡 ,𝑚, 𝜆) (9)

Thus, we can find that the key to the method is how to select representative features for the correlation modeling.
As demonstrated in Sec. 4.1, there is a correlation between spectral structures of in-ear speech and airborne
speech. Thus, we extract spectral features (i.e., fundamental frequency and Mel spectrogram) and corresponding
delta features from source and target domains for GMM modeling. To eliminate the over-smoothing effect, we
leverage the global variance of the frame sequence as a supplement feature [57].

4.4 In-ear Speech Synthesis

Next, we synthesize in-ear speech from existing airborne speech datasets based on the estimated transfer function.
After training, a GMM-based transfer function estimation is denoted by 𝐹𝑡 𝑓 . Given an airborne speech spectrogram
𝑆𝑎𝑖𝑟 , the synthetic in-ear speech spectrogram can be expressed as:

𝑆𝑖𝑒 = 𝐹𝑡 𝑓 (𝑆𝑎𝑖𝑟 ) (10)

Then, 𝑆𝑖𝑒 is converted to the time domain via inverse short-time Fourier transform (iSTFT). We use synthetic
in-ear speech and ground-truth in-ear speech collected in the real world to validate the effectiveness of the
designed data augmentation method preliminarily. First, we use paired airborne speech and in-ear speech of 6
participants to train the data augmentation model. Then, paired airborne speech and in-ear speech of the other 6
participants compose the validation dataset. We input each airborne speech sample in the validation dataset to
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Fig. 11. Cumulative distribution of spectral power below 1000 Hz.

generate a synthetic in-ear speech sample. Lastly, we use all synthetic in-ear speech samples and corresponding
ground-truth in-ear speech samples to conduct a preliminary validation of our data augmentation method.

Fig. 10 demonstrates an example comparison between ground-truth in-ear speech and synthetic in-ear speech.
We can clearly observe that the key spectral structures (e.g., formant) in synthetic speech are similar to those
in ground-truth speech. We want to obtain synthetic in-ear speech with a similar distribution to ground-truth
speech, which can help the speech enhancement task analyze/learn the distribution difference between clean
speech and noise. In our work, we calculate the cumulative distribution of spectral power to represent the
distribution difference in spectral structure. As shown in Fig. 11, we can observe that variation patterns of two
cumulative distributions are approximately similar, indicating the effectiveness of our designed method for data
augmentation. Furthermore, in Sec. 6.4, we will evaluate the contribution of data augmentation to the final speech
enhancement task in detail.

5 AIRBORNE SPEECH ENHANCEMENT UTILIZING DUAL-CHANNEL SPEECH

Intuitively, the speech enhancement task exploits the distribution difference between the desired speaker’s speech
and noise. Compared with the time domain, the distribution difference in the T-F domain is more discriminable. In
addition, as a special complementary modality, in-ear speech is also distributed by motion and heartbeat artifacts.
Therefore, it is necessary to pre-process collected raw dual-channel speech before enhancing target speech.

5.1 Data Pre-processing

Prior works [16, 22, 62] have reported that the frequency responses of motion-induced and heartbeat-induced in-
ear sounds are mainly distributed below 100 Hz. Thus, we first use a high-pass filter with 100 Hz to remove motion
and heartbeat artifacts. Since the frequency components above 8 KHz have little contribution to speech quality
and intelligibility, we resample the dual-channel speech from 44.1 KHz to 16 KHz to improve the computational
efficiency. Furthermore, we adopt a well-known voice activity detection (VAD) method [18] that extracts short-
term energy and spectral spread for voice frame recognition and silent frame removal. Lastly, we transform
dual-channel speech from the T domain to the T-F domain via short-time Fourier transform (STFT). The hamming
window length, window step length, and FFT length in STFT are set to 400, 100, and 512, respectively.

5.2 DC-SE Model Design

After signal pre-processing, we can obtain the amplitude spectrogram and the phase spectrogram, respectively.
Compared with the phase spectrogram, the amplitude spectrogram of speech has a more obvious structure
pattern which can help distinguish noise. In our work, we design a deep-learning speech enhancement model to
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Fig. 12. Detailed structure of the dual-channel speech enhancement network. It is noted that the auxiliary decoder

plays an important role in forcing the DC-SE model to learn multi-channel correlation information during the

training process.

learn correlation information between amplitude spectrograms of dual-channel speech signals for separating
target airborne speech from noise. The detailed network structure is shown in Fig. 12. The total parameters of
the model are about 3.8 MB1.

5.2.1 Feature Embedding. Although the sensory data of both channels are of the same modality, each channel
of speech has its own unique temporal-spectral structure. It is difficult to directly extract features to represent the
correlation between these dual-channel spectrograms. Therefore, we design a dual-branch Feature Embedding net-
work that transforms dual channels of speech into the same feature space and extracts high-level representations
to represent the cross-channel correlation.

We denote amplitude spectrograms of airborne speech and in-ear speech as 𝑆𝑁𝑎𝑖𝑟 ∈ R𝑇×𝐹×𝐶𝑎𝑖𝑟 and 𝑆𝑁𝑖𝑒 ∈ R𝑇×𝐹×𝐶𝑖𝑒 ,
respectively. Here, 𝐹 and 𝑇 denote the frequency and time bins, respectively. 𝐶𝑎𝑖𝑟 = 1 and 𝐶𝑖𝑒 = 1 are the number
of channels of airborne amplitude spectrogram and in-ear amplitude spectrogram, respectively. As shown in
the blue box of Fig. 12, the airborne speech feature embedding sub-network (upper row) and the in-ear speech
feature embedding sub-network (lower row) have the same structure that can effectively capture corresponding
correlation features. At the beginning of each sub-network, EarSpeech utilizes three 2-D convolution layers
with kernel sizes of 1 × 5, 5 × 1, and 5 × 5 to extract time-related correlation, frequency-related correlation, and
global time-frequency correlation from input amplitude spectrogram. Each 2-D convolution layer is followed by
a batch normalization layer and a ReLU function. In addition, we also borrow the FTB block from Phasen [64] to
capture the detailed harmonic structure in the speech spectrogram. Three FTB blocks are connected by shortcut
connections [29] to accelerate convergence. With the inspiration of Redundant Convolutional Encoder-Decoder
(R-CED) network [45], EarSpeech encodes output feature maps of the last FTB block into high dimension using
four repetitions of a 2-D convolution layer with the kernel size of 5 × 5, a batch normalization layer, and a ReLU
activation layer. No pooling layer is present during the process of feature encoding, making a fully convolutional
network more efficient. The FTB block does not change the input spectrogram’s size by the reshaping operation.
Zero padding is applied in all convolution layers to keep the size of the output feature map consistent with that of
the input feature map. Thus, the outputs of two feature embedding sub-networks are denoted by𝑈𝑎𝑖𝑟 ∈ R𝑇×𝐹×𝐶𝑎𝑖𝑟

and𝑈𝑖𝑒 ∈ R𝑇×𝐹×𝐶𝑖𝑒 , respectively, where 𝐶𝑎𝑖𝑟 = 128 and 𝐶𝑖𝑒 = 128. Lastly, EarSpeech concatenates the outputs of

1The source code of DC-SE model is available on https://github.com/EarSpeech/earspeech.github.io/tree/main/model
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two feature embedding sub-networks as a feature map𝑈 𝑖𝑒
𝑎𝑖𝑟 = 𝑐𝑎𝑡 (𝑈𝑎𝑖𝑟 ,𝑈𝑖𝑒 ) along the channel dimension, where

𝑈 𝑖𝑒
𝑎𝑖𝑟 ∈ R𝑇×𝐹×(𝐶𝑖𝑒+𝐶𝑎𝑖𝑟 ) .

5.2.2 Amplitude Mask Prediction. The amplitude ideal ratio mask represents the ratio of speech power to
noise power at each unit in the amplitude spectrogram. EarSpeech exploits the concatenated feature map𝑈 𝑖𝑒

𝑎𝑖𝑟 to
predict the amplitude mask𝑀𝑎𝑖𝑟 ∈ R𝑇×𝐹×1. As introduced in Sec. 5.2.1, EarSpeech encodes feature maps into the
high dimension by leveraging repetitions of convolution layers. Thus, in Amplitude Mask Prediction network, the
concatenated high-dimensional feature map is compressed into the low-dimension amplitude mask. As shown
in the green box of Fig. 12, Amplitude Mask Prediction can be considered as a decoder that has a symmetric
structure with Feature Embedding network. In addition, we connect the last four convolution layers of Feature
Embedding network and the first four convolution layers (i.e., decoder) of Amplitude Mask Prediction network by
element-wise skip connections with 1× 1 2-D convolution operations. Lastly, we use a 2-D convolution layer with
a Sigmoid activation layer to map the output feature map of the decoder into the amplitude ideal ratio mask𝑀𝑎𝑖𝑟 .

5.2.3 Airborne Speech Reconstruction. The enhanced amplitude spectrogram is the element-wise multi-
plication of the input noisy airborne amplitude spectrogram and the predicted amplitude mask, which can be
expressed as 𝑆𝐸𝑁𝑎𝑖𝑟 = 𝑆𝑁𝑎𝑖𝑟 ⊙ 𝑀𝑎𝑖𝑟 . To reconstruct airborne speech with high quality and intelligibility, we first
combine the enhanced airborne amplitude spectrogram and the noisy airborne phase spectrogram 𝑃𝑁

𝑎𝑖𝑟 ∈ R𝑇×𝐹×1,
as 𝑌𝐸𝑁 = 𝑆𝐸𝑁𝑎𝑖𝑟 𝑒

(− 𝑗𝑃𝑁
𝑎𝑖𝑟

) . Although prior works [42, 64] have reported that the phase spectrogram can help improve
the quality of reconstructed speech, accurate phase spectrogram estimation brings additional computational
overhead. Thus, by trading off the computational overhead and speech quality, we directly leverage the noisy
airborne phase spectrogram for speech reconstruction. Lastly, EarSpeech leverages the inverse short-time Fourier
transform (iSTFT) to convert the enhanced speech from the T-F domain to the T domain.

5.2.4 Auxiliary Decoder. Since the enhanced airborne speech spectrogram is highly correlated with the noisy
airborne speech spectrogram, the DC-SE model easily ignores the information of the in-ear branch. Thus, we
additionally design an Auxiliary Decoder network to force the DC-SE model to learn multi-channel correlation
during the training process. The DC-SE model transforms from a single-task (speech enhancement) learning case
to a multi-task learning (speech enhancement and in-ear speech reconstruction) case. It is noted that Auxiliary
Decoder network only participates in the training process and not in the enhancement process. The detailed
structure of Auxiliary Decoder network is shown in the red box of Fig. 12, consisting of repetitions of convolution
layers. The goal of the Auxiliary Decoder network is to reconstruct the in-ear speech spectrogram 𝑆𝑟𝑒𝑐𝑖𝑒 ∈ R𝑇×𝐹×1

using the high-dimensional feature map𝑈𝑖𝑒 ∈ R𝑇×𝐹×𝐶𝑖𝑒 encoded by the in-ear feature embedding sub-network.

5.3 Training Methodology

5.3.1 Noise Mixture Scheme. We adopt a scheme that mixes various types of noise with clean speech to
synthesize noisy speech. As introduced in Sec. 2.2.3, ambient noise has a subtle impact on the in-ear sound
channel. Thus, one of the most intuitive ways is to artificially mix various types of noise with clean airborne
speech and ignore the subtle impact of noise on in-ear speech, like previous solutions [3, 23, 46, 55, 64, 65].
However, this noise mixture way may decrease the robustness of our system in the real world, since ambient
noise indeed affects the in-ear channel. Thus, in our work, we design an effective noise mixture scheme that
simultaneously adds noise to airborne and in-ear channels. We observe that ambient noise needs to pass through
earphones before entering the ear canal. In other words, if we could measure the attenuation of ambient noise by
earphones, we can simulate the impact of ambient noise on the in-ear channel. Based on that, we perform a field
test to calculate the SPL of ambient noise inside the ear canal (denoted by 𝑃𝑛𝑖𝑒 ) and that of ambient noise outside
the ear canal (denoted by 𝑃𝑛𝑎𝑖𝑟 ). Specifically, we require three participants wearing our prototype to keep silent
and collect noise including music noise, conversation noise, ambient noise, and vehicle noise. In total, we collect
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Fig. 13. Themapping function between

√︃
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𝑎𝑖𝑟

and

√︃
𝑃𝑛
𝑖𝑒

shows a linear relationship which can be described by

a linear fitting function (red line).

Fig. 14. Proof-of-concept earphone prototype and

recording device (a Lenovo ThinkPad laptop).

125 5-second noise recordings in the air channel and corresponding noise recordings in the in-ear channel. We
surprisingly find that

√︁
𝑃𝑛
𝑎𝑖𝑟

and
√︁
𝑃𝑛
𝑖𝑒
are linearly related, i.e.,

√︁
𝑃𝑛
𝑖𝑒
= 𝑘 ∗

√︁
𝑃𝑛
𝑎𝑖𝑟

+𝑏, where 𝑘 = 1.828 and 𝑏 = 0.002,
as shown in Fig. 13.
Given ambient noise signals 𝑛𝑎𝑖𝑟 and clean airborne speech signals 𝑠𝑐𝑎𝑖𝑟 , we generate noisy airborne speech

signals 𝑠𝑛𝑎𝑖𝑟 with the SNR of Ω by:

𝑠𝑛𝑎𝑖𝑟 = 𝑠𝑐𝑎𝑖𝑟 + 𝛽 ∗ 𝑛𝑎𝑖𝑟 , where 𝛽 =

√︄ ∑(𝑠𝑐
𝑎𝑖𝑟

)2

10
Ω
10
∑(𝑛𝑎𝑖𝑟 )2

(11)

where 𝛽 denotes the scaling factor of noise signals. When we determine the 𝛽 , the noise power in the in-ear
channel can be calculated by:

𝑃𝑛𝑖𝑒 = (𝑘 ∗
√︃∑︁

(𝛽 ∗ 𝑛𝑎𝑖𝑟 )2 + 𝑏)2 (12)
Thus, the synthetic noisy in-ear speech 𝑠𝑛𝑖𝑒 can be expressed as follows:

𝑠𝑛𝑖𝑒 = 𝑠𝑐𝑖𝑒 + 𝛽1 ∗ 𝑛𝑎𝑖𝑟 where 𝛽1 =

√︄
𝑃𝑛
𝑖𝑒∑(𝑛𝑎𝑖𝑟 )2

(13)

where 𝑠𝑐𝑖𝑒 and 𝛽1 are clean in-ear speech signals and the scaling factor of ambient noise signals.

5.3.2 Loss Function Design. The Auxiliary Decoder network and the Amplitude Mask Prediction network
perform different tasks and share the in-ear feature embedding subnetwork. Hence, we define two loss functions to
improve learning efficiency and effectiveness. The first loss function is the enhancement loss, i.e.,L𝑒𝑛 (𝑆𝐸𝑁𝑎𝑖𝑟 , 𝑆𝐶𝑎𝑖𝑟 ) =��𝑆𝐸𝑁𝑎𝑖𝑟 − 𝑆𝐶𝑎𝑖𝑟

��2, that measures the element-wise mean squared error (MSE) between the predicted airborne amplitude
spectrogram and the clean airborne amplitude spectrogram. The minimization of L𝑒𝑛 helps the DC-SE model to
learn the feature correlation between dual-channel speech and the distribution difference between the target
speech and noise. Similarly, another loss function is the reconstruction loss, i.e., L𝑟𝑒𝑐 (𝑆𝑟𝑒𝑐𝑖𝑒 , 𝑆𝐶𝑖𝑒 ) =

��𝑆𝑟𝑒𝑐𝑖𝑒 − 𝑆𝐶𝑖𝑒

��2 that
represents the element-wise mean squared error between the reconstructed in-ear amplitude spectrogram and the
clean in-ear amplitude spectrogram. The minimization of L𝑟𝑒𝑐 ensures that the information of the in-ear channel
is not ignored. In practice, the reconstruction loss L𝑟𝑒𝑐 is about 100-120 times larger than the enhancement loss
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L𝑒𝑛 in the first few training epochs. The imbalance between the loss functions of the two tasks may make one
task overfitting and another task underfitting [25, 58]. Thus, we formulate the final joint loss function by applying
a logarithmic operation on each loss function:

L 𝑗𝑜𝑖𝑛𝑡 = 𝑙𝑜𝑔10L𝑒𝑛 + 𝑙𝑜𝑔10L𝑟𝑒𝑐 (14)

6 EVALUATION ANALYSIS

6.1 Experimental Setup

6.1.1 Proof-of-concept Prototype. Since most earphone manufacturers generally do not provide open API
access to the audio stream, we design a proof-of-concept hardware prototype to collect dual-channel audio
streams in our work. As shown in Fig. 14, we embed two AS-B6027AL30-RC electret microphones [39] on each
earphone. The outer microphone is mounted on the outside of the earphone to collect airborne speech. The
in-ear microphone is embedded into the earphone and faces towards the ear canal to collect in-ear speech. The
specifications of both microphones include a 44.1 KHz sampling rate, 2200 Ω acoustic impedance, and -30±2 dB
acoustic sensitivity. Earphones are connected to a Lenovo ThinkPad laptop with 3.5 mm jack adapters.

6.1.2 Dataset for Evaluation. (i) Dual-channel Speech Collection in Real World. We recruit 24 participants,
including 8 females and 16 males, with an age range of [22, 28]. Each participant is required to wear the earphone
prototype in the way that is most comfortable for them. In addition, each participant’s ear canals are completely
occluded by the ear tips of earphones. The reading material consists of 15 daily English conversations selected
from an online website [34]. Each participant says the reading material naturally at the sound pressure level of
a normal conversation and repeats it 5-10 times. Then, we split collected parallel dual-channel (airborne and
in-ear) speech samples into multiple 5-second segments for evaluation. In total, we can get 2450 pairs of airborne
and in-ear sound segments.
(ii) Noise Dataset. We select three types of noise (i.e., environmental noise denoted by 𝑛𝑒𝑛𝑣 , speech noise

denoted by 𝑛𝑛
𝑠𝑝ℎ

, and music noise denoted by 𝑛𝑚𝑠𝑐 ) to mix with clean airborne and in-ear speech samples. The
ambient noise all comes from the ESC-50 dataset [47] that contains 2000 environmental audio recordings. We
select more than 2900 audio recordings of 40 subjects from the LibriSpeech [43] to be speech noise. Lastly, we
randomly select 25 songs with different music categories from MUSAN [52] to be music noise. We believe that
such a wide range of noise categories can cover most daily scenarios.

(iii) Training/Testing Dataset Generation.We adopt the noise mixture scheme introduced in Sec. 5.3.1 for training
and testing dataset generation. A training/testing instance can be denoted by {𝑠𝑐𝑎𝑖𝑟 , 𝑠𝑐𝑖𝑒 , 𝑠𝑛}, where 𝑠𝑐𝑎𝑖𝑟 and 𝑠𝑐𝑖𝑒
denote the clean airborne, clean in-ear, and noise samples, respectively. For each pair of {𝑠𝑐𝑎𝑖𝑟 , 𝑠𝑐𝑖𝑒 }, we utilize 5
speech noise samples, 10 ambient noise samples, and 5 music noise samples to synthesize noisy airborne and
in-ear speech samples, respectively. The SNR of synthetic noisy airborne samples is distributed randomly in a
range of [−5, 15] dB (4.37 on average) that can cover most daily real-world scenarios.
(iv) Data Augmentation Using Public Dataset.We use collected dual-channel speech samples of 6 participants

to train the data augmentation model. Then, based on the trained augmentation model, we utilize a public
airborne speech corpus LibriSpeech for data augmentation. We select airborne speech samples of 40 subjects
in the LibriSpeech to generate in-ear samples. The generated/synthetic in-ear samples and corresponding real
airborne samples are mixed with noise to pre-train the DC-SE model.

6.1.3 DC-SE Model Implement and Training/Testing. We implement the DC-SE model with PyTorch [37].
In the training process, the noisy airborne speech and corresponding in-ear speech are fed into the DC-SE model.
The clean airborne speech and in-ear speech are the ground truth samples that are used for the loss calculation.
Based on the joint loss function designed in Sec. 5.3.2, an Adam optimizer [26] is applied for weights updating
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Fig. 15. Input-output SI-SDR of each testing user group (involving 3 participants). The results of each

user group are calculated by the DC-SE model that is trained based on the remaining 5 user groups

(involving 15 participants), i.e.leave-one-group-out cross-validation.

during training. The training process is completed on a server that is equipped with 40 Intel(R) Xeon(R) Silver
4210R@2.4GHz CPUs and 4 NVIDIA GeForce RTX 3090 graphics cards.

We first use a pre-training dataset generated from the LibriSpeech corpus to pre-train the DC-SE model with a
maximum epoch of 30 and a batch size of 16. Then, we use the dual-channel speech dataset that is collected in
the real world, to fine-tune the pre-trained DC-SE model. We split the remaining 18 participants into 6 groups.
We utilize the leave-one-group-out cross-validation (i.e., utilizing 5 groups for training and leaving the remaining
one group for testing at a time) for the performance evaluation of EarSpeech.

6.1.4 Evaluation Metrics. In our work, we adopt three speech quality metrics [45, 64] as follows:
• PESQ. Perceptual Evaluation of Speech Quality is a speech quality metric that ranges from -0.5 to 4.5, with
higher PESQ indicating better voice quality.

• STOI. Short-time Objective Intelligibility measure is a speech intelligibility metric that ranges from 0 to 1,
with higher STOI indicating better intelligibility.

• SI-SDR. Signal-to-distortion Ratio measures the distortion between the enhanced speech and clean speech,
with higher SI-SDR indicating that the enhanced speech is close to the clean speech.

6.2 Overall Performance

As introduced in Sec. 6.1.3, we evaluate the overall performance of EarSpeech via the leave-one-group-out
cross-validation approach that can better estimate the effectiveness and generalization of our system on users who
are not involved in the training process. Fig. 15 shows the input-output SI-SDR comparison of each testing user
group. The red line represents the output SI-SDR of noisy speech is equal to the input SI-SDR, i.e., no improvement
in speech quality and intelligibility. We can clearly observe that input-output SI-SDR distributions of different
testing user groups are similar, which indicates EarSpeech can yield a high generalization performance among
different users. In addition, we also find that our system can significantly improve the SI-SDR of noisy speech,
especially in poor SI-SDR conditions. For example, for noisy speech with SI-SDR ranging from -5 dB to 0 dB,
EarSpeech can achieve 12.11 dB SI-SDR improvement on average.

We also select Phasen which has been considered a state-of-the-art airborne speech enhancement solution [11,
32, 55, 65], as our baseline to evaluate the overall performance of EarSpeech. Tab. 1 illustrates the performance
comparison between EarSpeech and Phasen in different noise conditions, i.e., environmental noise (EN), music
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Table 1. Overall performance in different noise types with cross-validation. EN, MN, and SN represent environ-

mental noise, music noise, and speech noise, respectively.

PESQ STOI SI-SDR (dB)

Method EN MN SN Avg EN MN SN Avg EN MN SN Avg

Noisy speech 2.65 2.25 2.29 2.46 0.84 0.75 0.74 0.79 5.08 5.05 5.09 5.07
Phasen 3.24 3.00 2.91 3.05 0.86 0.85 0.80 0.84 11.05 9.93 9.36 10.11

EarSpeech 3.25 3.06 2.97 3.13 0.91 0.89 0.88 0.90 15.16 12.89 12.73 13.98

-w/o FTB 3.08 2.78 2.70 2.91 0.88 0.85 0.84 0.87 13.80 11.66 10.96 12.55
-w/o SK 3.11 2.87 2.79 2.97 0.89 0.87 0.86 0.88 13.87 11.80 11.31 12.70
-w/o AD 3.16 2.93 2.78 3.01 0.90 0.88 0.86 0.88 14.09 12.16 11.52 12.96
-w/o IC 2.32 2.23 1.98 2.21 0.76 0.76 0.68 0.74 5.93 5.88 3.15 5.24

noise (MN), and speech noise (SN). We observe that EarSpeech can significantly improve the quality and
intelligibility of noisy speech with an average PESQ improvement of 0.67 (improvement ratio of 27.23%), an
average STOI improvement of 0.11 (improvement ratio of 13.92%), and an average SI-SDR improvement of 8.91
dB. In addition, compared with music noise and speech noise, EarSpeech can more effectively separate the
environmental noise components from target speech. This is because the distribution pattern of environmental
noise is more distinguishable from the distribution pattern of speech. Furthermore, EarSpeech significantly
outperforms Phasen in average PESQ, average STOI, and average SI-SDR by 0.08, 0.06, and 3.87 dB, respectively.
Phasen adopts a BiLSTM and three fully connected layers to learn context information and predict the amplitude
mask, while EarSpeech takes advantage of convolution layers and skip connection instead. Therefore, the
total parameters of EarSpeech (about 3.8 MB) are 2 times smaller than Phasen (about 7.8 MB) and still yield a
performance improvement, showing a high applicability of EarSpeech on most commercial earphones.

6.3 Ablation Study

We conduct the ablation study to validate the contributions of key components in our speech enhancement model
(i.e., DC-SE model). The results of the ablation study are shown in Table 1.

(1)"w/o FTB" represents the "feature embedding" model without the FTB block that captures the detailed
harmonic structure of speech. Since harmonic information can help the DC-SE model recover clean speech with
minimal distortion, the quality and intelligibility metrics are decreased due to the loss of the FTB block.
(2)"w/o SK" represents the model without the skip connection block. We can find that the performance of

EarSpeech is decreased without the assistance of the skip connection block. That is because the skip connection
block can connect decoder and encoder blocks, avoiding the loss of context information.
(3)"w/o AD" represents the model without the "auxiliary decoder" block. The lack of the "auxiliary decoder"

block makes the DC-SE model unable to fully exploit the correlation between airborne and in-ear channels,
leading to a slight decrease in metrics.
(4)"w/o IC" represents the model without the in-ear channel branch (i.e., without "in-ear feature embedding"

and "auxiliary decoder" networks). The quality and intelligibility metrics exhibit a significant drop. Compared
with noisy speech, the DC-SE model w/o IC only improves the average SI-SDR from 5.07 dB to 5.24 dB. In addition,
the DC-SE model w/o IC even has a negative effect on the improvement of PESQ and STOI. This is because the
lack of assistance from the in-ear channel branch leads to overfitting of the model during the training process,
resulting in poor performance on unknown users in the testing dataset.
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Fig. 16. Data efficiency validation. {Case 1}: only utilizing the real dual-channel speech dataset for training. {Case

2}: only utilizing the augmented dataset for training. {Case 3-9}: utilizing the augmented dataset for pre-training

and then utilizing 50, 100, 150, 200, 400, 600, and 800 pairs of samples randomly selected from the real dataset for

fine-tuning, respectively. {Case 10}: utilizing the augmented dataset for pre-training and utilizing all samples in

the real dataset for fine-tuning.

(a) PESQ (b) STOI (c) SI-SDR

Fig. 17. Generalization validation on new sentences.

(a) PESQ (b) STOI (c) SI-SDR

Fig. 18. Generalization validation on Mandarin.

6.4 Data Augmentation Effectiveness and Generalization Capability

The GMM-based data augmentation method designed in Sec. 4 can expand the scale of the training dataset,
resulting in the improvement of generalization and sensing capacity. Although we have conducted a preliminary
experiment to study the performance of data augmentation in Sec. 4.4, we quantify the contribution of the data
augmentation method to the final speech enhancement task in this section from the following aspects.

Efficiency of Training Data. We first select sample pairs (1984 pairs in total) of 5 user groups (involving 15
participants) collected in real-world environments as the real dataset. The augmented dataset is generated as
introduced in Sec. 6.1.2. Then, we train the DC-SE model as the following approaches:

• Only utilizing the real dataset for model training (Case 1) and only utilizing the augmented dataset for
model training (Case 2). We also refer to Case 1 as the model without pre-training and Case 2 as the model
without fine-tuning.

• First, utilizing the augmented dataset for model pre-training and then utilizing 50, 100, 150, 200, 400, 600,
and 800 pairs of speech samples randomly selected from the real dataset for model fine-tuning, respectively.
(Case 3-9)

• Utilizing the augmented dataset for model pre-training and utilizing all sample pairs of the real dataset for
fine-tuning. (Case 10)

After each training process is completed, we use the remaining user group (involving 3 participants) to evaluate
the performance of our system. The average PESQ and SI-SDR are shown in Fig. 16. The average PESQ and SI-SDR
of the model that has not been fine-tuned on the real dataset (i.e., Case 2) are lower than the model that is not
pre-trained on the augmented dataset (i.e., Case 1). This is because there is still a certain distribution difference
between the augmented dataset and the real dataset. However, when we use small-scale speech samples in the
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Fig. 19. An example of transcription texts. Texts that

do not match the reference are marked red.

Fig. 20. WER in four real-world environments. NMS:

noise mixture scheme in Sec. 5.3.1

real dataset to fine-tune the pre-trained model (i.e., Case 3-10), we find that the performance of the system will
gradually increase and stabilize. For example, in Case 3, we only utilize 50 pairs of real two-channel speech
samples to fine-tune the model pre-trained on the augmented dataset, and the fine-tuned model can achieve an
average PESQ of 3.22 and an average SI-SDR of 13.11, which is comparable to the performance of the model (with
an average PESQ of 3.31 and an average SI-SDR of 13.18) trained using 1984 pairs of real samples (i.e., Case 1).
However, the number of real training data used in Case 3 is about 40 times less than that of Case 1. In particular,
when we use 100 pairs of samples to fine-tune the model (i.e., Case 4), EarSpeech achieves an average PESQ of
3.31 and an average SI-SDR of 14.12, which has outperformed Case 1. It indicates that with the benefit of our
designed data augmentation method, EarSpeech can achieve satisfactory enhancement performance by utilizing
only 1/40 to 1/20 of the original data size, greatly saving collection and labeling costs.

Generalization of New Sentence. To validate the generalization of new sentences (not present in the training
dataset), we still leverage the original training dataset (involving 15 participants) to train the DS-SE model with
the pre-training model involved and without the pre-training model involved respectively. Then, we require
three participants in the testing dataset to wear our prototype and read several new sentences. The dual-channel
speech samples corresponding to new sentences are utilized to validate the performance. The speech quality and
intelligibility metrics are shown in Fig. 17. We use the average PESQ, STOI, and SI-SDR of the model trained
following Case 10 as references which are shown as the red dotted lines. As we can see, the performance of our
system on new sentences is close to that of original sentences. It indicates a high generalization performance on
new sentences. In addition, we can observe that with the benefit of data augmentation, PESQ, STOI, and SI-SDR
of EarSpeech on new sentences are significantly improved.
Generalization of Mandarin Language. In addition, we also collect dual-channel speech samples of three

participants in Mandarin to study the generalization performance of different language types. The results are
shown in Fig. 18. In addition, we use the average PESQ, STOI, and SI-SDR of new English sentences as references
which are shown as the red dotted lines. Compared with the English corpus, EarSpeech still achieves a comparable
performance on the Mandarin corpus. In addition, the data augmentation can still benefit the improvement of
average PESQ, average STOI, and average SI-SDR.

6.5 Real-world Study and Noise Mix Scheme Validation

We conduct experiments in real-world environments to validate the effectiveness of the designed noise mixture
scheme. Specifically, we additionally collect dual-channel speech samples of 3 participants (not involved in
training) in four environments, i.e., a student office with fan noise (Env. 1, about 60.98 dB on average), a cafe with
music noise (Env. 2, about 65.02 dB on average), an outside street with environmental noise (Env. 3, about 74.02
dB on average), and an indoor mall with conversation noise (Env. 4, about 73.08 on average). Since we are unable
to obtain the clean speech signals as a reference, we adopt WER (word error rate) to evaluate the performance of
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Fig. 21. Impact of the audio length on EarSpeech. Fig. 22. List ofmaterials and geometries of ear tips (earbuds).

speech enhancement. We use Notta [38], a commercial online Transcribe Audio to Text platform, to process noisy
speech signals and enhanced speech signals, respectively. Fig. 19 illustrates an example of transcription texts.
We can find that the noisy speech enhanced by EarSpeech is with satisfactory quality and intelligibility. Fig. 20
shows the WER in different environments. "w/o EarSpeech" represents that the noisy speech is not enhanced by
EarSpeech. "w/ EarSpeech+ w/o NMS" and "w/ EarSpeech+ w/o NMS" represent the EarSpeech is trained
with and without the noise mixture scheme as introduced in Sec. 5.3.1. In Env. 1 and Env. 2, there is a subtle
difference in WER of with and without EarSpeech. That is because Notta is built on a large language model
that is robust to slight external disturbance. However, when the noise becomes serious, the improvement of
EarSpeech is obvious. For example, EarSpeech can reduce the WER from 70% to 30% in Env. 3. In addition, the
WER of EarSpeech increases significantly in Env. 4 where competing speakers are present. However, compared
with "w/o EarSpeech", our system still brings the improvement ratio of 45.3%. In addition, we also find that the
performance of EarSpeech with NMS is better than that without NMS, especially in very noisy environments.
The noise mixture scheme can simulate the impact of noise on the in-ear channel. When the environment has a
higher SNR, external noise has a subtle impact on the in-ear channel, as introduced in Sec. 5.3.1. Thus, our system
performs equally well with and without the help of NMS. When the environment has a poor SNR, the impact of
external noise is not ignored, causing a decrease in the performance of EarSpeech without NMS. Therefore,
these results also indicate the effectiveness of the designed noise mixture scheme.

6.6 Robustness Study

In this section, we study various factors that may affect the robustness of EarSpeech. The base model is firstly
pre-trained via the augmented dataset. Then we fine-tune the pre-trained model with dual-channel samples of 15
participants and evaluate the performance of EarSpeech using three participants under different conditions. All
dual-channel samples are collected with the 16 KHz sampling rate.

6.6.1 Impact of audio length. EarSpeech can handle audio inputs of different lengths. With the default audio
input length of 5 seconds, EarSpeech achieves outperforming enhancement performance as introduced in Sec. 6.2.
In this subsection, we also explore the impact of audio length on the enhancement performance. As shown in
Fig. 21, we can observe that Δ PESQ and Δ SI-SDR increase as the audio length increases. When the length
exceeds 2 s, our system performance tends to be stable. That is because longer audio clips can provide richer
temporal context information (including variations in speech characteristics, background noise statistics, and
contextual dependencies) that can potentially improve speech enhancement performance. However, even with an
audio length of 1 second, the system still achieves an average PESQ improvement of 0.76 and an average SI-SDR
improvement of 8.55 dB, which can meet the requirements of most voice input scenarios.
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Table 2. The enhancement performance of Ear-

Speechwith different types (materials and geometries)

of ear tips (ET 1, ET 2, ET 3, and ET 4).

ET 1 ET 2 ET 3 ET 4 std

PESQ 3.28 3.26 3.25 3.26 0.0126
STOI 0.91 0.90 0.91 0.91 0.0050

SI-SDR (dB) 14.12 14.07 14.11 14.15 0.0330

Table 3. Impact of audio channel on EarSpeech. "R":

right channel. "L": left channel. "RL": fused right and

left channels.

R-R L-R RL-R std

PESQ 3.21 3.16 3.17 0.0265
STOI 0.90 0.89 0.90 0.0058

SI-SDR (dB) 14.94 14.52 14.67 0.2128

(a) PESQ (b) STOI (c) SI-SDR

Fig. 23. Impact of different sampling rates and body movements.

6.6.2 Impact of earphone form-fitting geometry. The form-fitting geometry of earphones may influence the
occlusion effect and how much external noise is captured. Since current earphone manufacturers cannot provide
audio APIs for customers, we are unable to deploy EarSpeech on different types of commercial earphones. As
an alternative solution, we select different types of ear tips (also known as earbuds) to simulate the impact of
earphone form-fitting geometry. The materials (i.e., memory foam and silicone) and geometries (i.e., single flange,
double flange, and wingtips) of selected ear tips are shown in Fig. 22. ET 1 and ET 2 are both single-flange ear
tips but are made of different materials. ET 2, ET 3, and ET 4 are all made of silicone material but have different
geometries. Metrics of different ear tip types are shown in Tab. 2. The standard deviations of PESQ, STOI, and
SI-SDR are 0.0126, 0.0050, and 0.0330, respectively, indicating that EarSpeech generates a high generalization
capability among different earphone form-fitting geometries.

6.6.3 Impact of audio channel. The dual-channel speech enhancement model is designed as a structure with
two input branches, i.e., less noisy in-ear speech and noisy airborne speech. In the entire evaluation, we leverage
the right in-ear channel and right airborne channel by default. Due to the asymmetry of the human body, the
differences between the right in-ear channel and the left in-ear channel may affect the performance of EarSpeech.
Thus, we input speech samples from different channels into the speech enhancement model to explore the impact
of audio channels. Specifically, we combine the right-ear airborne channel and different in-ear channels. "R-R"
refers to paired speech samples from right in-ear and right airborne channels. "L-R" refers to paired speech
samples from left in-ear and right airborne channels. In addition, we also fuse in-ear speech samples from left
in-ear and right in-ear channels by averaging to obtain fused single-channel in-ear speech samples. Then, we
input the fused single-channel in-ear speech samples and right-channel airborne speech samples to the speech
enhancement model, denoted as "RL-R". The quality metrics are shown in Tab. 3. We can observe that different
in-ear channels only have a subtle impact on enhancement performance. The "R-R" still outperforms the other
two ways, since our designed enhancement model is trained based on the “R-R" way.
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Fig. 24. Position of the outer mi-

crophone on earphones.

Fig. 25. Depth of earplug in the

ear canal.

(a) PESQ (b) STOI (c) SI-SDR

Fig. 26. Impact of relative distance and wearing position.

6.6.4 Impact of Body Movement. We select three daily outdoor sports scenarios to study the impact of body
movement on the robustness of our system. The speech quality and intelligibility metrics are shown in Fig. 23. At
the sampling rate of 16 KHz, we can find that PESQ, STOI, and SI-SDR have only a small fluctuation range among
the three scenarios with STD of 0.096, 0.005, and 0.187, respectively. Prior works [16, 22, 62] have studied that
in-ear acoustic responses induced by body movements are concentrated below 100 Hz, which can be removed by
a low-pass filter in the pre-processing module. Thus, EarSpeech is resistant to body movements and works well
in both static and dynamic scenarios.

6.6.5 Impact of Sampling Rate. The base model is trained using dual-channel speech with 16 KHz, while we
use dual-channel speech with 8 KHz, 12 KHz, and 48 KHz to study the impact of sampling rate on the robustness
of EarSpeech. The speech quality and intelligibility metrics with different sampling rates are shown in Fig. 23.
We take the walking scenario as an example to analyze. As the sampling rate increases, PESQ, STOI, and SI-SDR
all gradually increase. That is because frequency components below 8 KHz mainly contribute to speech quality
and intelligibility. When speech samples are downsampled with a lower sampling rate (i.e.≤ 16 KHz), the effective
information is aliased [19]. However, microphones on most earphones support a sampling rate of 44.1 KHz or 48
KHz by default, indicating that EarSpeech is available to most earphones.

6.6.6 Relative Distance between In-ear and Outer Microphones. The relative distance between the outer
and in-ear microphones is also a key factor that needs to be considered. Generally, the in-ear microphone is
fixed on the inside of the earphone, facing inward. However, the outer microphone is located in two positions as
shown in Fig. 24. One position (P1) is on the exterior of the earphone, facing outward. Another position (P2) is on
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Table 4. Impact of soundplayed fromon-earphone speak-

ers with a comfortable volume.

PESQ STOI SI-SDR (dB)

w/ played sounds 3.37 0.92 13.89
w/o played sounds 3.49 0.96 14.16

EN MN SN

2

3

4

5

M
O

S

Noisy Speech
Enhanced by Phasen
Enhanced by EarSpeech

Fig. 27. Mean opinion score comparison among

different types of noise, i.e., environmental noise

(EN), music noise (MN), and speech noise (SN).

the earphone cable. The results are shown in Fig. 26. We can observe that the relative distance between the in-ear
and outer microphones has a subtle influence on the enhancement performance.

6.6.7 Wearing Position of Earphones. Wearing habits also vary from person to person. The insertion depth
of the earplug (shown in Fig. 25) can influence the occlusion effect [5]. We qualitatively divide the depth of the
earplug in the ear canal into depth insertion, best fit, and shallow insertion. It’s worth noting that the earplug is
ensured to completely block the ear canal, regardless of depth. We can observe from Fig. 26 that although the
PESQ, STOI, and SI-SDR of shallow insertion are slightly lower than those of deep insertion and best fit, the
variations of these metrics are all within a small range. The above results demonstrate that our system is robust
to variations of earplug insertion depth.

6.6.8 Impact of Sound Played from On-earphone Speakers. Users often wear headphones to listen to
music or other sounds. In hardware structure design, the on-earphone speaker is close to the in-ear microphone
(as shown in Fig. 14), which indicates that the sounds played back over the earphone speakers may interfere with
the in-ear speech collection. To explore the impact of sound played from on-earphone speakers, we select the top
5 songs from Billboard Hot 100TM2. When participants wear earphones to speak, these songs are also played
at a comfortable volume from on-earphone speakers. Metrics are shown in Tab. 4. We can clearly observe that
EarSpeech is robust to sounds played from on-earphone speakers. Although PESQ, STOI, and SI-SDR exhibit
a little drop, EarSpeech can still improve PESQ, STOI, and SI-SDR by 0.76, 0.13, and 8.54, respectively. That is
because the noise mixture scheme designed in Sec. 5.3.1 has simulated the impact of noise on the in-ear channel.
In addition, the noise dataset used in model training has included various types of music noise. Nowadays, most
earphones can automatically lower the playback volume or pause playback when they detect the user’s voice [40].
Thus, EarSpeech can also be applied to scenarios where sound is played from earphones.

6.7 Subject Measurement

The subjective measurement (i.e., Mean Opinion Score, MOS) from human participants is also an important metric
to measure speech quality and intelligibility. In our work, we divide the quality of speech into five levels [59],
i.e., Excellent - 5, Good - 4, Fair - 3, Poor - 2, and Bad - 1. Then, we invited 10 participants aged between 20 - 40
years old to score noisy audio samples, audio samples enhanced by Phasen, and audio samples enhanced by
EarSpeech. It is noted that the involved participants did not suffer from hearing loss before. The mean opinion
score comparison among different types of noise is shown in Fig. 27. EarSpeech outperforms Phasen by 0.26,
0.39, and 0.34 in terms of environment noise, music noise, and speech noise, respectively. These surprising results

2https://www.billboard.com/charts/hot-100/, WEEK OF APRIL 20, 2024.
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indicate that our system not only yields the best performance in objective evaluation metrics (i.e., PESQ, STOI,
and SI-SDR) but also performs best in the subjective evaluation metric.

Table 5. Run-time latency for a pair of 5 s audio clips.

Platform Pre-processing Inference Total

Laptop GPU 4.79 ms (± 0.72 ms) 38.39 ms (± 0.06 ms) 36.51 ms (± 7.35 ms)
Laptop CPU 7.80 ms (± 0.78 ms) 1.64 s (± 0.16 s) 1.71 s (± 0.13 s)

6.8 Run-time Latency Evaluation

Considering the limited computing capability of earphones, we adopt the client-server mode to evaluate the
system latency. The earphone prototype only collects the dual-channel speech and then transmits it to a paired
laptop via a wired connection. EarSpeech is deployed on the paired laptop with two hardware settings. One
hardware setting is with CPUs (Intel(R) Xeon(R) Silver 4210R) and another setting is with a GPU (NVIDIA
GeForce RTX 3090). In our work, we define the system latency as the time difference between the user ending the
voice input and EarSpeech outputting the enhanced airborne speech [55, 65]. It is noted that we ignore the data
uploading latency since the data is transmitted via the wired connection. Thus, the measured latency can also be
considered as the run-time latency. Tab. 5 shows the average run-time latency for a pair of 5 s audio clips repeated
to be calculated 10 times. EarSpeech can achieve an average overall latency of 36.51 ms on the GPU platform,
even on the CPU platform, our system can still achieve an average overall latency of 1.71 s. According to the
definition of real-time [27, 61], our system can meet the real-time requirements, since the processing latency is
less than the lengths of raw audio clips.

7 RELATEDWORK

7.1 Audio-only Speech Enhancement

Deep learning-based technologies have been widely adopted in the speech enhancement task [56], showing
significant improvement in performance compared with conventional denoising methods such as spectral
subtraction [24], filtering [1], and subspace decomposition [12]. Previous DL-based denoising technologies mainly
utilize distribution differences between clean speech and noise in the time or time-frequency domains. Generally,
these technologies artificially add noise at several SNRs to the clean speech to train the speech enhancement
model. Based on the training target, these technologies are divided into mapping-based and masking-based.
The mapping-based technologies aim to directly map noisy speech into clean speech during the model training
process [44–46]. However, masking-based technologies aim to predict an amplitude mask from the input noisy
amplitude spectrogram [56, 64, 66]. The amplitude mask represents the ratio of clean target speech to noise. The
enhanced amplitude spectrogram is determined by multiplying the predicted amplitude mask with the noisy
amplitude spectrogram. Compared with mapping-based technologies, masking-based technologies are more
sensitive to SNR variations but are more efficient in training on the limited-scale training dataset [66]. Therefore,
in our work, we take the basic idea of amplitude masking for speech enhancement.

7.2 Multi-modality Speech Enhancement

With the advance of multi-modality fusion, many studies have started to leverage non-audio modalities (e.g.,
visual signal [32], mmWave [30, 41, 63], and ultrasound [11, 55, 65]) that are less sensitive to ambient noise
as complementary modalities for speech enhancement. Compared with visual-based methods, wireless-based
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methods don’t raise too many concerns about privacy and attract more research attention. For example, Liu et
al. [30] have explored fusing mmWave signals with audio signals for noise-resistant speech recognition. Unlike
mmWave signals, ultrasound-based methods are based on available sensors (i.e., microphone and loudspeaker)
on most commercial devices, which don’t induce additional hardware costs. Sun et al. [55], Zhang et al. [65] and
Dinget al. [11] all leverage a loudspeaker of the mobile phone to emit ultrasound signals to capture articulatory
gestures and exploit the relationship between ultrasound signals and audio signals for speech enhancement.

7.3 Speech Enhancement Towards Earphones

Earphones have become one of the most popular wearable devices, making them considered a promising sensing
platform [4, 10, 13, 21, 22, 31]. As people use earphones more and more frequently for voice interaction (e.g.,
making a call), improving the quality of input voice on earphones is a problem worthy of long-term exploration.
Unlike other smart devices, earphones are small-size and resource-constrained, making it difficult to integrate
additional sensors on them. Recently, He et al. [23] leverage the microphone and accelerometer on earphones to
capture airborne speech and corresponding bone-conducted vibrations. However, it requires the accelerometer to
support sampling rates up to 1.6 KHz which is not accessible to most commercial earphones as claimed in [28, 33].
In addition, Chatterjee et al. [8] leverage left and right microphones on earphones for speech enhancement, which
is not suitable for single-earphone scenarios (e.g., using one earphone for work and charging the other earphone).
Recently, prior works started exploring bone conduction (BC) speech enhancement [9, 50, 51, 60, 67]. For example,
Wang et al. [60] study the relationship of complex spectral mapping between BC speech and airborne speech
for speech enhancement. However, the acquisition of BC speech requires a special transducer that is in contact
with the skull bones and converts the bone vibrations to speech. Unlike BC speech, in-ear speech refers to
sound vibrations affected by the occlusion effect in the ear canal. This type of speech can be easily detected by a
ubiquitous microphone which can be seamlessly integrated into most current earphones. Thus, our work focuses
on exploiting a cross-channel relationship between in-ear speech and airborne speech for speech enhancement.

8 DISCUSSION

Our work focuses on exploring the occlusion effect-based correlation between airborne and in-ear channels
for speech enhancement. Through real-world experiments, we demonstrate the effectiveness, robustness, and
generalization of our system. Nevertheless, there are several limitations that need to be addressed.

(1) OS Interface’s Public Access.We conducted a survey about the API access to operation systems on existing
earphones including Apple AirPods Series, Bose QuietComfort Series, Samsung Galaxy Buds Series, and HUAWEI
FreeBuds Series. We find that due to considerations such as intellectual property protection and security, most
earphone manufacturers generally do not provide us with earphone operation system interfaces, e.g., audio
access interfaces, network interfaces, and application programming interfaces. Therefore, we are unable to deploy
EarSpeech on commercial earphones to conduct an evaluation of practical performance. To solve this problem,
in our work, we implement a proof-to-concept prototype and adopt a client-server mode to conduct a preliminary
evaluation of the performance of our system. In the future, as researchers pay more attention to earphone-based
sensing and computing, we believe that earphone manufacturers will open rich operation system interfaces to
the public, allowing us to deploy EarSpeech on the earphone side.
(2) Lightweight Computing. Existing commercial earphones vary in terms of their computing capabilities, as

they are primarily designed for audio playback and communication purposes rather than intensive computation.
Some advanced earphones like Apple AirPods Pro, Sony WF-1000XM4, and Samsung Galaxy Buds Pro, have
incorporated certain computing capabilities to support audio processing, noise cancellation, connectivity, etc.
However, it is still difficult for them to support complex model computing. At the beginning of the enhanced
model design, we did consider the size and computational complexity of the model. Although the total parameters
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of the DC-SE model are approximately 3.8 MB, EarSpeech may be difficult to directly run on earphone sides. We
can explore model compression technologies (like pruning, knowledge distillation, and quantization) to accelerate
computing while keeping a good enhancement performance.
(3) Sound Played from On-earphone Speakers. In Sec. 6.6.8, we explore the impact of sound playback from

on-earphone speakers and find that replayed sound with a normal volume only has a subtle impact on EarSpeech.
However, when sound is played at high volume, the in-ear speech will be overwhelmed by noise, leading to
degradation of enhancement performance. However, in practice, users only listen to music at comfortable volumes.
Additionally, most earphones have supported Speak-to-Chat mode, which can automatically lower the playback
volume or pause playback when they detect the user’s voice [40].

9 CONCLUSION

In this work, we design EarSpeech, an earphone-based speech enhancement technology. EarSpeech utilizes outer
and in-ear microphones on a single earphone to capture sound vibrations propagating along different channels
and exploits the occlusion effect-based correlation between them to improve the quality and intelligibility of
airborne speech. Based on the occlusion effect, we design a data augmentation method to generate a large-scale
synthetic dual-channel speech corpus. Then, a deep learning-based speech enhancement model is designed to
effectively fuse dual-channel speech signals with heterogeneous structures to remove noise components from
target speech components. Through pre-training with the augmented dataset, EarSpeech can achieve excellent
enhancement performance by using only about 1/40 of the original samples for fine-tuning. Comprehensive
experiments have demonstrated the effectiveness, robustness, and generalization ability of EarSpeech.
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