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ABSTRACT
The existing RF-based liquid identification methods commonly re-
quire a training network of liquid or the container information,
such as material and width. Moreover, status quo methods are inap-
plicable when the solution height is lower than that of the antenna,
which is generally unknown either. This paper proposes LiqRay,
an RF-based solution, retaining non-invasive and fine-grained liq-
uid recognition abilities, thus can recognize unknown solutions
without prior knowledge. In dealing with the unknown container
material and width, we utilize a dual-antenna model and craft a
relative frequency response factor, exploring diversity of the per-
mittivity in frequency domain. In tackling the unknown heights
of solution and antenna, we devise the electric field distribution
model at the receiving antenna, solving the unknown heights via
spatio-differential model. Among eight different solvents, LiqRay
can identify alcohol solutions with a concentration difference of 1%
with 94.92% accuracy. Nevertheless, LiqRay can obtain the relative
frequency response factor with a relative error of 6.7% without
being affected by the height of the solution. Even if it is merely
4 cm, this is fairly lower than that of most antennas’ heights, since
the operating frequency is around 2 GHz.
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Figure 1: Non-invasive, and fine-grained Liquid recognition
system, LiqRay.

1 INTRODUCTION
Traditional liquid identification usually relies on the expensive
specialized equipments [5, 13, 44, 49]. To facilitate deployment, in
recent years, researchers have done a lot of meaningful works based
on the communication device, such as RFID and WiFi [14, 15, 23,
48, 63]. Those pioneering studies reduce the deployment cost of
the liquid identification systems, whereas there are the following
limitations in terms of ease deployment. Tagscan [63], Tagtag [65],
WiMi [18] and FG-LiquID [39] propose methods for sensing liq-
uids using RFID, WiFi, or millimeter wave radar. However, they are
all data-driven systems, which therefore can’t identify unknown
solutions that don’t exist in the database. It is difficult to build a
network with a large amount of training data for recognizing solu-
tions. LiquID [14] and Vi-Liquid [24] build models using UWB and
mechanical waves, respectively, to calculate the complex permittiv-
ity and viscosity characteristics, which are the object features of
the solution. Nonetheless, both of them require prior knowledge
of the container (e.g. complex permittivity and width) to work. In
many case, it is difficult to place a solution into a known container.
WiMi [18] implements solution identification independent of con-
tainer width on WiFi devices. But it can’t distinguish concentration
at a fine-grained level (For example, identify alcohol solutions with
a concentration difference of 1%).

Furthermore, none of these works consider the relative height be-
tween the solution and the antenna. However, when the height of the
solution is less than that of the antenna, the strength of the received
signal correlates with the height of the solution [35, 51, 61]. For
example, the WiFi antenna is generally above than 12 cm, but the
height of a 400 ml coffee cup is about 8 cm and that of a 330 ml of
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Table 1: Comparison of Material Identification Methods with Wireless Signals.

Method Recognize un-
known solutions

Unlimited
solution height

Non-invasive Fine-grained
concentration
detection(1%)

No need to know
the container material

No need to know
the container width

LiquID[14] yes no no no no
Vi-liquid[24] yes no no yes no
TagScan[63] no no yes no no
Tagtag[65] no no no yes no

FG-LiquID[39] no no no yes yes
WiMi[18] no no no yes no
LiqRay yes yes yes yes yes

Coca-Cola is 10.67 cm [1]. Besides, in many cases, we don’t even
know the height of the solution.

In summary, the aforementioned solutions are absent in the
following two design properties:

• First, non-invasive. In many cases, the container and the solu-
tion require non-invasive measurement, which means that it
is not allowed to put the measured liquid into a customized
container. As a result, if the system is built based on a con-
tainer with a specific material and width, it needs to invade
the solution to be tested. For non-intrusive liquid recogni-
tion, we need to eliminate the effects of container material
and width at the same time.

• Second, fine-grained. The solutions can be identified on a fine-
grained level. For example, using different solvents to dis-
solve alcohol, we can accurately identify the type of solvent
and distinguish the solutions with a concentration difference
of 1%.

The basic observation is that different solutions have different
complex permittivities, so wireless signals are attenuated differently
in different liquids [19, 28, 55]. The attenuation factor of the liquid
can be applied to construct features for recognizing the solutions.
However, there are three challenges needed to be solved first.

(1) First, the attenuation factor cannot be used as a feature to
recognize unknown solutions because we cannot get the value of the
attenuation factor under non-invasive requirements. In an RF link,
the strength of the received signal is affected by the type of solution,
the transmission distance in the solution, the distance between the
receiving and transmitting antennas, the container material, as well
as the antenna gain [19, 27, 28, 35, 59]. Without relying on prior
knowledge (such as the container width and material information),
it is difficult to eliminate the effects of these factors and get the
attenuation factor.

(2) Conventional wireless channel models (e.g. CSI model [64])
may require the antenna to be lower than the liquid for liquid
recognition. Otherwise, only a portion of the electromagnetic wave
reaching the receiving antenna passes through the solution, which
makes the strength of the received signal related to the height of
the solution. We need to remove the signal difference due to the
change in height, but both the antenna’s and the solution’s height
are unknown to us.

(3) The signal has similar attenuation in solutions with similar
concentrations, whereas the recognition of fine-grained solutions
requires the extraction of discriminative features. For example, after

a 2.4 GHz electromagnetic wave transmits 5 cm in two solutions
(two alcohol solutions of similar concentrations [7]) with complex
permittivity of 75 + 18 𝑗 and 80 + 19 𝑗 , the amplitude of the signal
is attenuated by 0.78 times and 0.74 times, respectively. This dif-
ference is easily drowned out by noise. For the purpose accurately
recognizing liquids, we need to use similar signals to construct
sufficiently different features.

Solutions. Firstly, based on the attenuation factor, we build an
RF-based dual antenna model to eliminate the effects of container
material and antenna gain (Sec. 4.1). Notably, the attenuation factor
of the solution is related to the signal frequency [7, 8, 36], therefore
we extract the relative frequency response factor of the solution as the
solution feature, which is independent of the container width. De-
spite the fact that different solutions may have similar attenuation
factors at some frequencies [21], due to the different polarization
characteristics of molecules, the change trends of the attenuation
factors of different solutions are different when the frequency is
changed [32, 33]. Taking advantage of the trend in frequency bands,
the relative frequency response factor contribute to recognize the
solution at a fine-grained level. To facilitate data collection and save
frequency band resources, we sample data at four frequency points,
that are 1.7 GHz, 2.0 GHz, 2.4 GHz and 2.6 GHz (Sec. 4.3).

Secondly, aimed at eliminating the effect of solution height, we
model the transmitting and receiving antennas as thin straight
antennas instead of a point. Combined with the distribution of the
electric field in space, we extend the model to establish a functional
relationship between the received signal strength and the solution
height (Sec. 4.4). When the transmitting antenna is displaced a small
distance, the electric field below the solution level will change. We
extend the dual antenna model so that it can use this difference
to extract the relative frequency response factor. In summary, we
build a model-driven system to recognize solutions.

Contributions: The major contributions in LiqRay is three-fold:
(1) We model the electric field distribution and construct a func-

tional relationship between the received signal strength and the
liquid height. Using the electric field difference when the spatial
position of the transmitting antenna changes, we extend the model
from 2D to 3D, which allows LiqRay to recognize the solution
independently of the height of the liquid and the antennas.

(2) We build a dual antenna model to eliminate the effect of the
container material. Based on the characteristic that the complex
permittivity of the solution changes with frequency, we design a
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Figure 2: Energy loss of electromagnetic waves: (1) Refraction
at the interface of different media; (2)Attenuation in the
medium.

relative frequency response factor, the relative value of the atten-
uation factors at multiple frequencies, to eliminate the influence
of the container width. Utilizing the relative frequency response
factor as a feature, LiqRay can recognize the solution independently
of the container material and width.

(3) We propose LiqRay to identify the concentration and types
of alcohol solution in different solvents. Even for similar solvents,
such as Coca-Cola and Pepsi, LiqRay can identify the alcohol con-
centration of 1% particle size with an accuracy rate of more than
90%. For solutions with different heights (above 4 cm), LiqRay ob-
tains the relative frequency response factor with an average error
of 6.7% .

The rest of the paper is organized as follows. In Sec. 2, we present
the background of the attenuation factor, RF signal, and antenna.
In Sec. 3, we introduce the components of our system. We detail
on how to remove the effects of container width and material, the
method of recognizing fine-grained solutions, and how to recognize
solutions without being affected by the solution height in Sec. 4. In
Sec. 5, we make extensive evaluations with several case studies to
validate our system. We discuss some practical issues in Sec. 6 and
introduce the related work in Sec. 7. Finally, we conclude our work
in Sec. 8.

2 PRELIMINARIES
2.1 Attenuation factor of solution
The attenuation factor, is defined as the width of the material needed
to decay the strength of the electromagnetic field to 1

𝑒 of its original
value [14, 19]. For ease of representation, we use 𝛽 to represent the
reciprocal of this width, which is given by:

𝛽 =
2𝜋
𝜆0

√√√
𝜖′ (

√︃
1 + ( 𝜖 ′′𝜖 ′ )2 − 1)

2 (1)

where 𝜆0 is the wavelength of electromagnetic waves in the vac-
uum. 𝜖′ and 𝜖′′ are the real and imaginary parts of the complex
permittivity of the solution, respectively. The attenuation factor
depends merely on the complex permittivity of the solution, which
can be used to construct a feature to recognize the solution.

2.2 Signal transmission model
Our signal transmission model is shown in Fig. 2. A container con-
taining the solution is placed in the RF link. When electromagnetic

h
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Figure 3: The received signal strength 𝑉 is the integral of
the product of the electric field around the antenna and the
induced current.

waves are transmitted to the interface of two media (such as air
and container wall), they will be refracted and reflected, and part
of this energy can be transmitted to the new medium [20, 43, 45].
The fraction of penetrated energy is given by the transmission co-
efficient, 𝑇 . In addition, when the signal is transmitted in solution,
it will be attenuated. The degree of attenuation is affected by the
attenuation factor, 𝛽 .

As a result, when we send a signal with strength 𝑆0 is sent from
TX, the strength of the received signal on RX can be expressed
as [14, 29]:

𝑆𝑟 = 𝛼 (𝐷𝑎𝑖𝑟 )𝛤𝑒−𝛽𝑑𝑃𝑆0 (2)
where 𝛼 (𝐷𝑎𝑖𝑟 ) is the attenuation of electromagnetic waves in air
with the transmission distance, 𝑑 is the transmission distance of
signal in liquid, and 𝑃 is the gain of the receiving antenna. Moreover,
𝛤 is the product of the transmission coefficients across the four
interfaces, including two air-container interfaces (𝑇𝑎→𝑐 , 𝑇𝑐→𝑎) and
two container-liquid interfaces (𝑇𝑐→𝑙 , 𝑇𝑙→𝑐 ).

The relationship between the complex permittivity and the trans-
mission coefficient, 𝑇 , is given by [62]:

𝑇 =

√︂
1
2𝜖

′ (1 +
√︁

1 + (𝜖′′/𝜖′)2) (3)

2.3 The relationship between signal strength
and electric field distribution

Since the signal is transmitted differently in the air and solution [6,
26], the height of the solution affects the distribution of the electric
field around the receiving antenna, which leads to the difference
in the induced voltage on the receiving antenna. To eliminate the
influence of height, we need to explore the relationship between
the induced voltage and the electric field distribution.

As shown in Fig. 3, a beam of electromagnetic waves incidents
the antenna along the negative direction of the 𝑥-axis (perpendic-
ular to the antenna) with an electric field whose field strength is
𝐸 (𝑦). The direction of the electric field is the positive direction of
the 𝑦-axis (parallel to the antenna). According to the antenna the-
ory [35, 38, 46], it is assumed that the midpoint of the antenna is fed
symmetrically by a balanced two-wire transmission line, thus, the
length of the antenna is arbitrary, and the current is approximately
sinusoidal, which is 𝑓 (𝑦) in Fig. 3. Therefore, for an antenna with
a length of 2ℎ that is symmetrical about the midpoint, the total
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Figure 4: System Overview. Having preprocessed the data, we judge whether the solution is higher than the antenna. If the
height of solution (𝐻𝑠𝑜𝑙 ) is less than that of antenna (𝐻𝑎𝑛𝑡 ), we first remove the effect of height. Then we construct the relative
frequency response factor that is independent of the width and material of container to recognize the liquids.

induced voltage 𝑉 is given by:

𝑉 = 2
∫ ℎ

0
𝐸 (𝑦) 𝑓 (𝑦)𝑑𝑦 (4)

3 OVERVIEW
LiqRay consists of three major components: data preprocessing, cor-
rected height, and recognize the solution. We utilize a transmitting
antenna and two receiving antennas to construct our system.

Data preprocessing. We process the data collected from the
two receiving antennas separately. The data is first filtered and
smoothed to suppress noise. Then the Tx movement detection is
performed to determine the time when the transmitting antenna
starts to rise. Subsequently, a segment of the data is intercepted to
recognize the liquid.

Corrected height. We construct an electric field distribution
model and control the transmitting antenna to rise a certain distance
by a motor. We use the difference of the electric field caused by the
displacement of the transmitting antenna to remove the effect of
the solution height (Sec. 4.4).

Recognize solution. The intensity of received signal is affected
by the material and width of the container, as well as the attenuation
factor. We extract the attenuation factor of the solution to construct
feature to achieve the purpose of knowing the solution in a fine-
grained level. Since the container material has similar effects on the
signal strength of the two RF links, we combine the two antenna
signals to remove the influence of the container material (Sec. 4.1).
Moreover, we take advantage of the different attenuation of signals
of different frequencies in the solution to remove the influence of
the width of the container (Sec. 4.2). Finally we introduce how the
system achieves fine-grained levels in Sec. 4.3.

4 SYSTEM DESIGN
4.1 How to remove the influence of container

material and antenna?
Dual antenna model. In order to remove the influence of antenna
and container material, we design a dual-antenna model. Figure 5
shows the situation with two receiving antennas. We use one trans-
mitting device to send the signal, and use two antennas on the other
device to receive the signal.

For the first RF link, the transmission distance of the signal in
the solution is 𝑑1, and the transmission distance of the signal in
the air is 𝐷1. Similarly, for the second link, 𝑑2 and 𝐷2 represent the
transmission distance of the signal in liquid and air, respectively.

Similar to the Equ. 2, the signal strengths 𝑆𝑟1 and 𝑆𝑟2 received
by the two receiving antennas are given by:

𝑆𝑟1 = 𝛼 (𝐷1)𝛤1𝑒
−𝛽𝑑1𝑃𝑆0

𝑆𝑟2 = 𝛼 (𝐷2)𝛤2𝑒
−𝛽𝑑2𝑃𝑆0

(5)

where 𝛼 (.) is the attenuation of electromagnetic waves in the air
with the transmission distance, and 𝑃 is the gain of the receiving
antenna. The attenuation factor is defined as 𝛽 and 𝛤 is the product
of the transmission coefficients across the four interfaces.

Model analysis. Since the distance between the transmitting
and receiving antennas is much larger than the distance between
the two receiving antennas, we believe that 𝐷1 ≈ 𝐷2. In addition,
the container and solution that the signal passes through when
propagating in the two RF links are the same, the transmission
coefficient 𝛤 is also the same. As a result, we can remove the
influence of these factors on the signal by simple ratio processing:

Δ𝑆𝑟 =
𝑆𝑟1
𝑆𝑟1

= 𝑒−𝛽Δ𝑑 (6)

where Δ𝑑 = 𝑑1 − 𝑑2.
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Figure 5: Dual antenna model. The transmission coefficient
of the two RF signals is the same.

4.2 How to remove the influence of container
width?

Based on the fact that the attenuation factor of the solution varies
with frequency [21, 37], we extract the relative frequency response
of the solution using electromagnetic waves with multiple frequen-
cies, which is independent of the container width.

Challenges in solving attenuation factor. The attenuation
factor cannot be solved directly using the received signals without
prior knowledge. But in order to non-invasive recognize solutions,
the features we design for solutions must contain only attenuation
factors. As shown in Equ. 6, the solution factor 𝛽 and the container
width Δ𝑑 are coupled together. If there are𝑛 different RF links in the
environment to construct 𝑛 sets of equations, there are 𝑛 unknown
variablesΔ𝑑 and a solution factor 𝛽 , totaling𝑛+1 unknown variables.
This is an underdetermined system of equations that cannot have
an unique solution.

Opportunities brought attenuation factor in different fre-
quency. We note that the attenuation factor 𝛽 of the signal in the
solution is related to the complex permittivity [19, 52]. In addition,
the value of the complex permittivity of the solution is related to
the frequency of the electromagnetic wave [7, 30, 62]. Therefore,
electromagnetic waves with different frequencies will have differ-
ent degrees of attenuation when passing through the same solution.
When the frequency is 𝑓𝑖 , we denote the attenuation factor as 𝛽 (𝑓𝑖 ).
For the same RF link, we transmit signals in𝑚 frequencies. Thus,
we get𝑚 independent equations. Since the position of the antenna
does not change, Δ𝑑 in those 𝑚 equations is the same. Although
still underdetermined, that gives us the possibility to construct so-
lution feature using relative values of attenuation factors, which
are independent of transmission distance.

Extractingwidth-independent relative frequency response
factor. In the case that neither the container nor the solution is
changed, we collect the signal intensity of electromagnetic waves of
different frequencies and form a set Δ𝑆𝑅 = [Δ𝑆 𝑓1𝑟 ,Δ𝑆

𝑓2
𝑟 , . . . ,Δ𝑆

𝑓𝑛
𝑟 ],

where 𝑓𝑖 is the i-th frequency. When 𝑖 ≠ 𝑗 , we can get:

𝑄𝑖 = ln (Δ𝑆 𝑓𝑖𝑟 ) = −𝛽 (𝑓𝑖 )Δ𝑑𝑓𝑖
𝑄 𝑗 = ln (Δ𝑆 𝑓𝑗𝑟 ) = −𝛽 (𝑓𝑗 )Δ𝑑𝑓𝑗

(7)

Figure 6: Using the signals of different frequencies to remove
the influence of container material and width.

The change of the complex permittivity with frequency results
in a change in the transmission coefficient. As a result, the trans-
mission path of the signal in the liquid, Δ𝑑 , is also a function of
frequency. Fortunately, the transmission coefficient varies little
with frequency [22]. Figure 7 shows the transmission coefficient’s
relative variation with frequency of seven common liquids, which
is calculated by Equ. 3. The change in the value of the transmission
coefficient at 2.6 GHz is less than 0.6% compared to that at 1.7 GHz.
And when the position of the antenna and the container are un-
changed, the transmission distance of the signal in the liquid is only
related to the transmission coefficient. As a result, we believe that
Δ𝑑 is a constant. We can get an equation independent of Δ𝑑 :

𝐿𝑖, 𝑗 =
𝑄𝑖

𝑄 𝑗
=

𝛽 (𝑓𝑖 )
𝛽 (𝑓𝑗 )

(8)

For 𝑖, 𝑗 changes from 1 to 𝑛, we can get the relative frequency
response factor 𝐹 = [𝐿𝑛,𝑛−1, 𝐿𝑛,𝑛−2, . . . , 𝐿𝑛,1, 𝐿𝑛−1,𝑛−2, . . . , 𝐿𝑖, 𝑗 ,
. . . , 𝐿2,1]. The whole process is shown in Fig.6. 1

4.3 How to recognize liquids in a fine-grained
way?

4.3.1 Build Solution Features. Based on the attenuation factor, we
take the relative frequency response as the fingerprint of the so-
lution and use a small amount of frequency band resources to
complete the recognizing of the fine-grained solution.

Relative frequency response factor can be used as a fine-
grained feature. Figure 8 shows the attenuation factors for 6 dif-
ferent liquids (calculated according to complex permittivities [21]
of different frequencies using Equ. 1). It can be found that different
liquids have similar attenuation coefficients at some frequencies.
Yet the relative frequency response factor constructed based on the
attenuation factor is unique. As shown in Equ. 1, the attenuation
factor is related to the complex permittivity. Due to the different
polarization characteristics of different molecules, the changing
trend of the attenuation factor with frequency is different for differ-
ent solutions [41, 47], which makes the relative frequency response
factors can be used to identify solutions at a fine-grained level. We
convert the data in Fig. 8 to relative frequency response factors
(using Equ. 8), which are shown in Fig. 9. Different solutions have
different fingerprint characteristics.
1We only need data of three frequencies to construct a fingerprint.
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Figure 7: The transmission coeff-
icient remains stable.

Figure 8: Different liquids have similar
attenuation factors at some frequencies.
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Table 2: Accuracy of recognition under different signals.

Frequency
(GHz)

Accuracy rate
of concentra-

tion recognition

Accuracy rate
of species

recognition
1.7 65.53% 73.33%
2.0 73.74% 77.93%
2.4 55.38% 63.64%
2.6 70.49% 74.07%
5.0 74.66% 77.12%
1.7,2.0,2.4 83.62% 88.77%
1.7,2.6,5.0 88.71% 90.19%
1.7,2.0,
2.4, 2.6 94.92% 97.30%

1.7,2.0, 2.4,
2.6, 5.0 95.72% 98.93%

We find that some dimensions in Fig. 9 have less dimensional
information (such as dimension 1). In order to reduce the time of
data collection, we explore the number of frequency points required
for recognizing the fine-grained solution with experimental results.

Select the frequencies of the carriers. We use eight common
solutions (2.5 L) as solvents, including Water, Sprite, Pepsi, Coca
Cola, Master Kong Green Tea, Master Kong Iced Black Tea, Huiyuan
Peach Juice, and Huiyuan Orange Juice, in which we dissolve alco-
hol in concentrations ranging from 0% to 20%, and then recognize
them. We use a 3D printed resin container (8 cm×30 cm×30 cm,
shown in Fig. 12(b)) to hold the solution. We send 1.7 GHz, 2.0 GHz,
2.4 GHz, 2.6 GHz and 5.0 GHz frequency signals, respectively. Then
we use the k-nearest neighbor algorithm (k=1) to recognize the
solution. For the single frequency, we use the amplitude ratio of
two receiving antennas as the feature (Equ. 6), and for multiple
frequencies, we extract the relative frequency response factor as the
feature. The results are shown in Table 2. When using the relative
frequency response factor as a feature, the recognition accuracy is
significantly improved. The same three frequency points are used,
and the increase of the frequency interval will increase the accuracy.
Considering the small frequency band range of many antennas, we
reduce the frequency separation. We find that 4 frequency points
can already realize the recognition of the fine-grained solution, and
increasing the number of frequency points will not significantly im-
prove the accuracy. Therefore we choose 1.7 GHz, 2.0 GHz, 2.4 GHz
and 2.6 GHz to use.

Compared with FG-LiquID[39], which uses 57 GHz to 64 GHz
frequency band resources for fine-grained solution identification,
we only need to collect signals on some frequency points with an
interval greater than 300 MHz.

4.3.2 Data Processing. Data smoothing and signal extraction.
After the solution is presented in the RF link, the amplitude of the
signal is significantly attenuated. When smoothing the amplitude
curve, we apply a sliding window to continuously detect if the
solution to be tested is present in the RF link. The variance of the
amplitude value in sliding window reflects the degree of amplitude
fluctuation. When the variance is large and the amplitude decreases,
this paper considers a solution to be placed in the RF link; when
the variance is large and the amplitude is increasing, we consider a
solution to be taken out of the RF link.

Feature Screening. We use electromagnetic waves in four fre-
quency bands (1.7 GHz, 2.0 GHz, 2.4 GHz, and 2.6 GHz). We use
water and 5% alcohol as the test solution to collect data 50 times
independently. Then we calculate the variance of each dimension
feature. We find that feature stability varies widely across dimen-
sions. The main reasons leading to poor data stability are: (1) Inter-
ference from other signals, such as WiFi signals in the 2.4G band;
(2) 𝑙𝑛(.) operations and division operations amplify signal errors.
Therefore, we utilize variance to filter the dimensions with stable
and use them as the final solution feature.

4.4 How to remove the influence of height?
4.4.1 Height-corrected Model. We find that the solution height
affects the strength of the received signal [16], which makes it
difficult to obtain stable solution features. In order to eliminate the
influence of height, we build a model of the electric field distribution
in space and obtain the function relationship between the received
signal intensity and the height of the solution. Using the electric
field change caused by the displacement of the transmit antenna,
we remove the effect of height.

Solution height affects signal strength. For antenna with
height of 9 cm, we add water of different heights to a resin container
(length, width, and height are 60 cm× 60 cm× 40 cm), and the signal
strength on the receiving antenna will also change accordingly. We
test the electromagnetic waves of 2.0 GHz, 2.3 GHz and 2.6 GHz
respectively, and the results are shown in the Fig. 10(a). When
the height of the solution is less than the height of the antenna,
the electromagnetic waves of different frequencies are affected to

301



LiqRay: Non-invasive and Fine-grained Liquid Recognition System ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

(a) (b) (c)

Figure 10: Height-corrected Model. (a) When the liquid height is less than the antenna height, the liquid height will affect the
signal strength. (b) When the depth of the solution is less than the height of the antenna, the signal received by the receiving
antenna consists of two parts: (1) 𝐸𝑙 that reaches the receiving antenna through the liquid; (2) 𝐸𝑎 that reaches the receiving
antenna through the air. (c) The data collected by the two receiving antennas when the transmitting antenna is slowly raised.
We utilize sliding time windows for start point detection and random slices for solution feature extraction.

different degrees, so we cannot design a correction factor in advance
to correct the effect of the height.

Electric field distribution model. As shown in Fig. 10(b), the
height of the solution is ℎ𝑙 , and the height of the receiving antenna
is ℎ. When ℎ > ℎ𝑙 , the electromagnetic wave near the receiving
antenna is composed of two parts: (1) transmitted from the liquid,
the field strength is 𝐸𝑙 ; (2) transmitted from the air is 𝐸𝑎 . When the
container is in the far-field region of the transmitting antenna, we
treat the incident waves as the plane electromagnetic wave [35].
When sending a signal with a frequency of 𝑓 , the electric field −→

𝐸𝑎

and −→
𝐸𝑙 are given by:

−→
𝐸𝑎 = 𝛤𝑎𝛼𝑎

−→
𝐸0

−→
𝐸𝑙 = 𝛤𝑙𝛼𝑙 exp(−𝛽𝑑)−→𝐸0

(9)

where 𝑑 is the transmission distance of a signal in solution, and 𝛽 is
the attenuation factor of the solution. 𝛤𝑎 and 𝛤𝑙 are the transmission
losses caused by the refraction of the two RF signals during trans-
mission. 𝛼𝑎 and 𝛼𝑙 are the attenuation of electromagnetic waves.
−→
𝐸𝑎 = 𝐸𝑎

−→𝑒𝑦 and −→
𝐸𝑙 = 𝐸𝑙

−→𝑒𝑦 , where −→𝑒𝑦 is the unit vector in the vertical
direction.

For the sake of simplicity, we define 𝛾 =
𝑇𝑙𝛼𝑙
𝑇𝑎𝛼𝑎

, as a result

𝐸𝑙 = 𝛾 exp(−𝛽𝑑)𝐸𝑎 (10)

According to Equ. 4, the signal strength 𝑆0
𝑟 on the antenna is derived

by:

𝑆0
𝑟 =

∫ ℎ𝑙

0
𝐸𝑙 𝑓 (𝑦)𝑑𝑦 +

∫ ℎ

ℎ𝑙

𝐸𝑎 𝑓 (𝑦)𝑑𝑦

= 𝛾 exp(−𝛽𝑑)𝐸𝑎
∫ ℎ𝑙

0
𝑓 (𝑦)𝑑𝑦 + 𝐸𝑎

∫ ℎ

ℎ𝑙

𝑓 (𝑦)𝑑𝑦
(11)

where 𝑓 (𝑦) is the distribution of induced current on the antenna,
which is related to the type of antenna and the wavelength of the
signal.

Signal differential to eliminate height effects. We collect
signals at different ℎ. Every Δℎ collects the signal strength of the
receiving antenna to obtain a sequence 𝐴 = [𝑎0, 𝑎1, . . . , 𝑎𝑛−1],

where

𝑎 𝑗 = 𝑆
𝑗
𝑟 =

∫ ℎ𝑙

𝑗Δℎ
𝐸𝑙 𝑓 (𝑦)𝑑𝑦 +

∫ ℎ

ℎ𝑙

𝐸𝑎 𝑓 (𝑦)𝑑𝑦

= 𝛾 exp(−𝛽𝑑)𝐸𝑎
∫ ℎ𝑙

𝑗Δℎ
𝑓 (𝑦)𝑑𝑦 + 𝐸𝑎

∫ ℎ

ℎ𝑙

𝑓 (𝑦)𝑑𝑦
(12)

As a result,

𝑎 𝑗+1 − 𝑎 𝑗 = 𝛾 exp(−𝛽𝑑)𝐸𝑎
∫ ( 𝑗+1)Δℎ

𝑗Δℎ
𝑓 (𝑦)𝑑𝑦

= 𝛾 exp(−𝛽𝑑)𝐸𝑎 𝑓 ( 𝑗Δℎ)Δℎ
(13)

Two receiving antennas are used in our system, and we compute
Δ𝑎 = 𝑎 𝑗+1 − 𝑎 𝑗 separately on both antennas:

Δ𝑎𝑟𝑥1 = 𝛾 exp(−𝛽𝑑1)𝐸𝑎 𝑓 ( 𝑗Δℎ)Δℎ
Δ𝑎𝑟𝑥2 = 𝛾 exp(−𝛽𝑑2)𝐸𝑎 𝑓 ( 𝑗Δℎ)Δℎ

(14)

We calculate their ratio to get:
Δ𝑎𝑟𝑥1
Δ𝑎𝑟𝑥2

= 𝑒𝑥𝑝 (−𝛽Δ𝑑) (15)

where Δ𝑑 = 𝑑1 − 𝑑2.
Equ. 15 no longer contains height information. We find that

Equ. 15 and Equ. 6 have the exact same form. Therefore, we use the
method in Sec. 4.2 for subsequent processing to obtain the liquid
fingerprint.

4.4.2 Implementation Details. Tx movement detection. The sig-
nals we collect consist of a three-stage process: the transmitting
antenna is stationary; the transmitting antenna is moved upward;
and the transmitting antenna is stationary. To recognize the solu-
tion, we need to slice the signal collected when the transmitting
antenna is raised. As shown in Fig. 10(c), we use the double sliding
windows packet detection algorithm to detect the start point of the
signal. We set up two fixed-width 𝐿 and adjacent sliding windows
𝐴 and 𝐵. Later we calculate the variance ratio of signals in the two
windows [57]:

𝑣𝑎𝑖 =
𝑉𝑎𝑟 (𝐴)
𝑉𝑎𝑟 (𝐵) (16)
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Figure 11: Experimental deployment.
(a) (b)

Figure 12: Experimental container.

where 𝑖 is the right edge of window 𝐴, and the variance of the
signal within the window is denoted as𝑉𝑎𝑟 (.). When both windows
contain only the signal in the static, 𝑣𝑎 is small; and when one
window contains the signal in the static and the other window
contains the signal in the antenna rising, 𝑣𝑎 grows. If the value of
𝑣𝑎𝑖 is 50 times greater than the value of 𝑣𝑎0, we consider that the
antenna starts to rise.

Clustering and selecting stable slices. As shown in Equ.13,
we only need the data of two adjacent positions to calculate the
fingerprint of the solution. However, due to the existence of random
noise and other factors, Δ𝑎 may not be able to perform subsequent
processing (such as Δ𝑎 is a negative value). We devise some meth-
ods to avoid that. For each frequency of data, we randomly compute
a slice (width is 800 samples). For those slices, we fit a 5th order
polynomial to the data and use them to calculate relative attenua-
tion factors. We cluster the attenuation factors for each dimension
(choose 0.2 for the inter-class distance) [50]. Then we check if the
number of samples in the largest class exceeds 50% of the total. If
the number of dimensions satisfying the condition is less than 3, we
re-slice the data. Although theoretically the transmitting antenna
(TX) only needs a small displacement (Δℎ) to eliminate the effect
of height, due to factors such as random noise and sampling error,
this paper raises the TX by at least 2 cmduring the test to ensure
enough data to select data slice.

We extend the signal transmission model to remove the effect of
height. Using the dual-antenna model and the characteristic that
the attenuation factor of the solution changes with frequency, the
influence of the material and width of the container is removed,
and the purpose of knowing the unknown solution in fine-grained
level is achieved.

5 EVALUATION
5.1 Experimental Setup
Hardware setup: As shown in Fig. 11, we use the NI company’s
N2944R USRP devices to send and receive signals. The antennas
can send and receive wireless signals in the frequency range of 698-
960 MHz, 1710-2700 MHz and 4900-5850 MHz. We use a computer
with Intel i7-10700 CPU and 16 G memory to process the RF data.

Experimental environments: Our experimental setup for eval-
uating LiqRay is shown in Fig. 11. The USRP devices are placed 3 m
away from the antennas, and we place containers in the direct path.
In the process of collecting data, we continue to send a sine signal at
frequencies of 1.7 GHz, 2 GHz, 2.4 GHz, and 2.6 GHz,respectively.

Table 3: Measured Relative attenuation factor with LiqRay
vs. Ground Truth.

Liquid
Relative
attenuation factor Baseline

Fea1 Fea2 Fea3 Fea1 Fea2 Fea3
Water 2.34 1.68 2 2.29 1.62 1.95
Sprite 2.44 1.75 2.05 2.38 1.68 1.99
Pepsi 2.2 1.62 1.9 2.12 1.57 1.83

Coca Cola 2.59 1.77 2.18 2.5 1.71 2.12
Master Kong
Iced Black Tea 2.76 1.84 2.29 2.70 1.79 2.23

Master Kong
Green Tea 2.91 1.87 2.41 2.81 1.83 2.32

Huiyuan
Peach Juice 2.98 1.90 2.46 2.86 1.85 2.37

Huiyuan
Orange Juice 2.68 1.79 2.25 2.60 1.76 2.17

Figure 13: Identification performance of alcohol solutions
with different solvents.

5.2 Micro benchmark
Experimental Settings. To verify the effectiveness of our model
and techniques, we use eight common solutions as solvents, in
which we dissolve alcohol in concentrations ranging from 0% to 20%,
and then recognize them. We use a 3D printed resin container (8 cm
× 30 cm × 30 cm, which is shown in Fig. 12(a)), to hold the solution.
For eight common solutions, we calculate their relative attenuation
factors as baselines using their complex permittivities, which are
provided by an authoritative Institute of Chemical Technology
(Chemical Lab).

Baseline accuracy. As shown in Table 3, the target liquids are
common in daily life, including beverages with different formulas,
such as Coke and Pepsi. Fea1 is the ratio of attenuation factors
at frequencies of 2.6 GHz and 1.7 GHz. Fea2 is the ratio of atten-
uation factors at frequencies of 2.6 GHz and 2.0 GHz. Fea3 is the
ratio of attenuation factors at frequencies of 2.4 GHz and 1.7 GHz.
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Figure 14: Identification performance for 8 liquids.

Figure 15: The impact of container width.

Figure 16: The impact of container material.

Compared with the ground truth, the mean relative error of our
system is 4.3% . By taking the relative attenuation factor (using five
frequencies) as features, we adopt a simple K-Nearest Neighbors
algorithm (K=1) to differentiate those liquids. Fig. 14 presents the
resulting confusion matrix, which shows an average classification
accuracy of 97.30% . Evidently, LiqRay can distinguish a large num-
ber of liquids correctly, even if they are highly similar, like Coke
and Pepsi.

Recognizing fine-grained solutions. We test eight different
solvents: Pepsi, Master Kong Ice Black Tea (a tea beverage), Coca-
Cola, Master Kong Green Tea (a tea beverage), Orange juice, Peach
juice, water, and Sprite. For each solvent, the alcohol concentration
varies from 0 to 20% in 1% steps. For each concentration, we collect
data 100 times independently. By taking the relative attenuation
factor (using 4 frequencies) as feature, we adopt a simple K-Nearest
Neighbors algorithm (K=1) to differentiate those liquids. As shown
in Fig. 13, it achieves an average accuracy of 94.92% .

Impact of container material. We pour the target liquids
into five different material containers (both have a radius of 5 cm),
including glass, resin, ceramic, enamel, and bamboo. The liquids
are with different concentrations from 0% to 10% at a step size

(a) Relative attenuation factor of water at different heights.

(b) Relative attenuation factor of peach juice at different heights.

(c) Relative attenuation factor of Coca Cola at different heights.

Figure 17: Solution features remain stable when the height
of the solution is changed.

Figure 18: Accuracy in identifying NaCl and sucrose.

of 1% and different solvents with Coca-Cola, Sprite, Pepsi, and
water. The results are shown in Fig. 16. The average accuracy of
concentration identification is 93.54% , and the accuracy of solvent
type identification is 95.28% . Containers of different materials have
similar accuracy rates.

Impact of container width. The target liquids are poured into
containers with three different width (including 4 cm, 8 cm and
12 cm), which are shown in Fig. 12(b). The concentration of liquid is
from 0% to 10% at a step size of 1%, 45%, 46% and 78% and different
solvents with Coca-Cola, Sprite, Pepsi and water. The results are
shown in Fig. 15. In containers of different widths, it can recognize
the solution with more than 90% accuracy. However, as the width
of the container increases, the attenuation of the signal increases,
which reduces the accuracy.

Impact of solution height. We evaluate the impact of the
height of the solution on LiqRay’s recognition accuracy. We vary
the height of the solution to be tested from 4 cm to 12 cm in step of
2 cm. We choose three different liquids including water, Cola, and
peach juice. We calculate the features of the same solution when the
height of the solution is different, and the results are shown in the
Fig. 17. The average error in the relative decay factor is 6.7% when
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Figure 19: The accuracy of using different shapes containers
to hold solutions in different environments.

the height of the solution changes. This means that our system
is still able to recognize the solution when the solution height is
different.

5.3 Macro benchmark
LiqRay’s performance in different environments with differ-
ent containers. As shown in Fig. 11, we test LiqRay’s ability to
recognize solutions in a hall environment, a simulated living room
environment, and a laboratory environment. In each environment,
we pour the test liquids into five different shape glass containers,
including cube, cylinder, and three irregular shapes. The liquids
are with different concentrations from 0% to 10% at a step size of
1%, 45%, 46% and 78% with water. As shown in Fig. 19, containers
of different shapes have similar accuracy rates. The difference in
accuracy between different containers is less than 4%. and the dif-
ference in accuracy between different environments is less than 3%.

NaCl and sucrose concentration detection. Regarding people
with high blood pressure and diabetes, controlling salt and sugar
intake can help keep them healthy. We perform concentration iden-
tification for sodium chloride solutions and sucrose solutions. We
dissolve NaCl and sucrose in water with a particle size of 2%, and
then extract the most characteristic relative attenuation factors,
and use the KNN method to recognize them. The results are shown
in Fig. 18, and the recognition accuracy is over 93%.

Oil-based concentration detection. We test LiqRay’s ability
to recognize oil-based liquids using mineral oil as the solvent and
soybean oil and glycerol as the solute, respectively. Specifically, we
use a resin container of size 30 cm × 30 cm × 8 cm to hold the liquid.
We utilize mineral oil as the solvent and soybean oil and glycerol as
the solute, respectively. The concentration of the solution is varied
from 1% to 20%. For each concentration, data are collected 50 times
independently. We use 20% of the data as the test set. Then a KNN
(k=1) classifier is used to identify the concentration of the liquid.
The results are shown in Fig 20. LiqRay can distinguish 2% particle
size glycerol solutions with over 78% accuracy. But for the soybean
oil solution, LiqRay has difficulty distinguishing effectively. We
believe the reason is that the attenuation of electromagnetic waves
is more pronounced in glycerol than in soybean oil [2, 10, 12]. Since
the liquid features depend on the attenuation factor of the liquid, it
is difficult to effectively distinguish between lossless media.

Figure 20: Identification performance of solutions with dif-
ferent oil-based liquids.

6 PRACTICAL ISSUES
6.1 The impact of diffraction
LiqRay is built on the ray tracing model [59]. When the size of
the obstacle is similar to the wavelength, the diffraction phenome-
non can make the ray tracing model unsuitable [9]. Therefore, we
analyze the effect of diffraction by theoretical calculations.

When the container size is large, the effect of diffraction
can be ignored. When the length and width of the container
exceed 30 cm, the relative error on the results between the Kirch-
hoff integration [28] and the ray tracing model is less than 1.6%.
We believe that the model described in the paper is applicable in
this case. Diffraction phenomena can be explained using Huygens’
principle [25], and Kirchhoff’s integral can be approximated using
Huygens’ principle [9]. According to Kirchhoff’s integral theorem,
the field strength of a point 𝑃 in a closed surface can be regarded as
the sum of the effects of each point on the surface on 𝑃 . As shown
in Fig. 21(a), the electromagnetic waves emitted by the point source
𝑃 ′ reaches the point 𝑃 in space through the small hole on the screen.
With Kirchhoff approximation [58], Equ. 17 can be written as:

𝐸 (𝑃) = 𝑖𝑘

2𝜋

∮
𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

𝑒𝑖𝑘𝑅

𝑅

𝑒𝑖𝑘𝑅
′

𝑅′
𝑐𝑜𝑠𝜃

(
1 + 𝑖

𝑘𝑅

)
𝑑𝑎 (17)

where 𝑅 and 𝑅′ are the distances from the element of area 𝑑𝑎 in the
aperture to the points 𝑃 and 𝑃 ′, respectively. The angle 𝜃 and 𝜃 ′ are
those between R and n, and R′ and n′, respectively. We perform
simulation calculations based on Equ. 17 and our experimental
setup. Specifically, the distance from the light source 𝑃 ′ to the
screen of the screen is 0.5 m, and the distance from the observation
point to the screen is 1.5 cm. Figure 21(b) shows the difference
between the integration results and the ray tracing model. When
the container size is larger than 30 cm, the relative difference is less
than 1.6%, so we believe that our model can be applied in this case.

For smaller containers in differentmaterials, the KNN clas-
sifier can still distinguish different liquids at a fine-grained
level despite being affected by diffraction.As shown in Fig. 21(b),
when the container size is small (for example, the radius is less than
5 cm), the error of the ray tracing model is large. We use the Mie
scattering model [31] to calculate the distribution of the electric
field when the solution is different and the container material is dif-
ferent. We find that the difference caused by the change of solution
concentration is larger than the change of container material, which
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Figure 21: Calculate the effect of diffraction. (a) The electric field intensity at point 𝑃 is the integral of all secondary light
sources on the curved surface 𝑆1; (b) When the container size is greater than 30 cm, the relative error between the calculation
results of the ray tracing model and the Kirchhoff integration model is less than 1.6%. (c) The intra-class distance is less than
the inter-class distance.

indicates that we can still use the KNN classifier for liquid identifi-
cation. We use a scattering model [31] to calculate the distribution
of electromagnetic fields in space.

We use the Lichtenecker formula [40, 54] to obtain approximate
values for different concentrations of alcohol solutions. We set the
inner dielectric of the cylinder to an alcohol solution, and the outer
dielectric to different materials [3, 11], including wood, glass, hard
paper, ceramic, and PVC. We set the width of the container to 5 cm,
the thickness of the container to 3 mm, and the angle between the
two receiving antennas to be 𝜋/6. We calculate data at frequencies
of 1.7 GHz, 2 GHz, 2.4 GHz, and 2.6 GHz. Figure 21(c) shows their
intra- and inter-class distance. We find that the difference caused
by different materials is smaller than that caused by different con-
centrations, which indicates that the distinction can be done using
the KNN classifier.

6.2 Ability of USRP to distinguish signals
Theoretically, as long as there is a difference in the distance that
the signal travels in the liquid, the amplitude of the signal received
by the two receiving antennas will be different. However, due to
the noise of the receiving device, when the transmission distance
is small enough, the receiving device cannot distinguish the two
signals. We analyze the difference between the signal amplitudes
of the two receiving antennas of LiqRay. We explore the limits of
USRP’s ability to discriminate between signals.

Due to the slight deformation of the container and the rapid atten-
uation of the signal in the liquid, the amplitude difference between
the two receiving antennas is usually more than 8%, which can
be distinguished normally by the USRP device. Figure 12(a) shows
the container used for the experiment. As shown in Fig. 22(a), we
model the two curved sides as a parabola to analyze the difference
in the distance that the signal travels in the liquid. Due to the thin
walls of the container, when the container is filled with water, it
deforms to about 13 cm wide in the middle and about 8 cm wide on
the sides. When the distance between the two receiving antennas
is 5 cm, the difference between 𝑑1 and 𝑑2 is about 6 mm. For several

common beverages (water, Cola, etc.), the amplitudes of the signals
typically differ by more than 8%.

In addition, we explore the limits of USRP to distinguish
signals. For four different frequencies (1.7 GHz, 2 GHz, 2.4 GHz,
2.6 GHz), we independently acquire data 200 times in an empty
hall. For each acquired data, we use a Gaussian filter to remove
noise. In order to make the signals of different frequencies have the
same dimension (the gain of the antenna to the signals of different
frequencies is different), we linearly scale the amplitudes of the
signals of different frequencies so that their mean is 1. The results
are shown in Fig 23. The standard deviation of data collected at
different times of the same frequency does not exceed 0.005. There-
fore, we believe that the difference between the signals that can
be distinguished by USRP should be no less than 1%. For a 2 GHz
signal, the transmission distance of the signal in water is greater
than 1.6 mm, and when the frequency rises to 5 GHz, this threshold
is reduced to 0.6 mm.

6.3 Antenna coupling
In deployment, the distance between two receiving antennas may
be less than half a wavelength. Antenna coupling affects the ampli-
tude of the received signal because the mutual impedance among
multiple antennas affects the equivalent impedance of the receiving
antenna [34]. In this case, the mutual coupling of the antennas may
affect the strength of the received signal. We use the ENA vector
network analyzer (KEYSIGHT E5071C) to test the change of the
reflection coefficient of the antenna when the distance between the
two receiving antennas is different, and the results are shown in
the Fig. 24. Compared with 10 cm, when the antenna spacing is 4
cm, the change of the reflection coefficient does not exceed 0.4 dB,
which indicates that the change of the received signal amplitude
does not exceed 2%. The diameter of the antenna used for liquid
identification is 3 cm and the distance between the antennas is
more than 4 cm, so we believe that the antenna coupling does not
affect the amplitude of the received signal.
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Figure 22: The deformed
container.

Figure 23: The standard deviation of repeated
collection data is less than 0.005.

Figure 24: The reflection coefficient are relatively
stable across different distances.

7 RELATEDWORK
RF-based liquid detectionmethod. Recently, in the field of liquid
identification, researchers have proposed many excellent systems
based on RF [14, 23, 48, 63]. Those methods can be divided into two
categories, one is data-driven, which requires pre-trained features
to distinguish different liquids; the other is model-driven, which
builds models to obtain the physical or chemical parameters of the
liquid itself (such as complex permittivity).

(1) Data-driven method. Tagscan [63] extracts the RSSI and phase
change as features from RFID tag reading to create a database and
classify 10 liquids. Tagtag [65] propose to attach one RFID tag on the
target of interest for liquid testing, which can detect fake alcohol,
baby formula adulteration, fake luxury CHANEL perfume, and
expired milk by comparing with the training set. FG-LiquID [39]
designs a novel neural network for sensing liquids using millimeter
wave radar, which can identify 30 different liquids in a fine-grained
manner. In addition to not being able to identify the unknown
liquids, it is inconvenient to build a database containing lots of
kinds of solutions. Therefore, we use a model-driven approach to
construct the system with the attenuation factor.

(2) Model-driven method. LiquID [14] uses the amplitude and
phase of the signal to solve the equation to obtain the complex
permittivity of the liquid, which is able to identify 33 kinds of
liquids. Using mechanical waves, Vi-Liquid [24] builds a model to
compute the viscosity of the liquid, which realizes the identification
of 30 kinds of liquids. But these methods usually rely on prior
knowledge, such as the material and width of the container. Having
built a dual-antenna model and extracted the relative frequency
response factor as a feature of the liquid, we construct a container-
independent system.

They only identify liquids in the 2D ranges without considering
the relative height of the solution to the antenna. We construct the
distribution model of the electric field and eliminate the influence
of height by using the change of the electric field when the transmit-
ting antenna is displaced and completed the solution recognition
in the 3D range.

Traditional liquid identification methods. Traditionally, ma-
terial recognition requires the use of expensive specialized equip-
ment to provide data [4, 17, 53, 56, 60]. In addition to expensive

equipment, these methods typically require immersing the probe
in a solution to collect the signal and further analyze the spectral
information with a spectrometer.

Optical and camera based liquid detection method. Recent
research on optical and camera-based liquid detection method has
many different problem-solving theories and meaningful applica-
tions [23, 42, 48, 66]. Smart-U [23] can recognize food or liquid in
the spoon by employing the LEDs and photodiodes. However, these
methods are not easy to deploy in daily life. CapCam [66] uses
the phone’s camera to capture the ripples created by vibrations in
the solution to recognize the solution. But it only recognizes clear
solutions.

8 CONCLUSION
This paper presents LiqRay, a non-invasive and fine-grained sys-
tem that can use RF signals to recognize unknown solutions. We
develop a new computational model independent of the container
material and width, as well as the solution height, which allows
us to recognize unknown solutions in unknown containers. Our
comprehensive experiments show that LiqRay can discriminate
between alcoholic solutions with a concentration difference of 1%,
monitoring sugar and salt intake. It can cope with different con-
tainers and solution heights. Our model-driven scheme is making
efforts to cultivate liquid recognition system pervasive and robust
enough for more applications and scenarios.
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