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Abstract—The effectiveness of WiFi-based localization systems
heavily relies on the spatial accuracy of WiFi AP. In real-world
scenarios, factors such as AP rotation and irregular antenna tilt
contribute significantly to inaccuracies, surpassing the impact of
imprecise AP location and antenna separation. In this paper, we
propose Anteumbler, a non-invasive, accurate, and efficient system
for measuring the orientation of each antenna in physical space.
By leveraging the fact that maximum received power occurs when
a Tx-Rx antenna pair is perfectly aligned, we build a spatial angle
model capable of determining antennas’ orientations without
prior knowledge. However, achieving comprehensive coverage
across the spatial angle necessitates extensive sampling points.
To enhance efficiency, we exploit the orthogonality of antenna
directivity and polarization, and adopt an iterative algorithm,
thereby reducing the number of sampling points by several
orders of magnitude. Additionally, to attain the required antenna
orientation accuracy, we mitigate the influence of propagation
distance using a dual plane intersection model while filtering out
ambient noise. Our real-world experiments, covering six antenna
types, two antenna layouts, two antenna separations (λ/2 and
λ), and three AP heights, demonstrate that Anteumbler achieves
median errors below 6 ◦ for both elevation and azimuth angles,
and exhibits robustness in NLoS and dynamic environments.
Moreover, when integrated into the reverse localization system,
Anteumbler deployed over LocAP reduces antenna separation
error by 10mm, while for user localization system, its integration
over SpotFi reduces user localization error by more than 1m.

Index Terms—WiFi localization, Antenna orientation, Polar-
ization matching.

I. INTRODUCTION

W IFI is developing as a candidate for indoor sensing for
its low cost and ubiquitous infrastructure. Many works

utilise WiFi devices to achieve fine-grained sensing tasks, such
as localization and tracking [1]–[4], health monitoring [5],
[6] and object imaging [7]–[10]. Despite previous research
demonstrating the great potential of WiFi sensing, the direct
application of existing schemes to sense indoor environments
remains a rather challenging problem. A major reason is the
need to ensure the credibility of the WiFi infrastructure itself,
i.e., the requirement for accurate prior knowledge of WiFi ac-
cess points’ (APs’) or antennas’ locations and orientations in
the sensing ambiences. Inaccuracies in this knowledge may
introduce computational errors that render the sensing systems
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ineffective [11]. For example, techniques that use antenna
arrays to combat multipath rely on precise antenna separation
and orientation [1]–[3], and feature-based sensing methods
require that the antennas remain relatively consistent during
the training and inference [12], [13].

Moreover, the polarization of the antenna plays an important
role in wireless communication and sensing. Although there
are some researches devoted to the use of circularly polarized
antennas for indoor localization and communication to better
combat indoor complex environments [14]–[16], there are still
few deployments in practice. At present, dipole antennas and
monopole antennas are commonly used at APs and Internet of
Things (IoT) devices, and these antennas are omnidirectional
and linearly polarized [17]–[19]. Two such antennas perform
best when they are oriented in parallel, and perform poorly
when they are perpendicular to each other which, in turn,
affects communication and sensing range [20], [21].

To specify this issue, this paper take WiFi localization as a
case and examines how the credibility of WiFi infrastructure
affects accuracy. In WiFi localization, WiFi APs can calculate
the exact position of user based on Received Signal Strength
Indicator (RSSI), Channel State Information (CSI), Angle of
Arrival (AoA) or Time of Flight (ToF). Such localization
systems require prior knowledge of the positions and orienta-
tions of WiFi AP or its antenna array in indoor map. These
spatial properties can of course be obtained manually and
calibrated regularly, but are obviously very time consuming
and labor-intensive, especially when there are many WiFi
APs. In particular, antenna orientation is an often overlooked
aspect. Nevertheless, errors in antenna orientation can lead to
decreased accuracy in the localization system [18], [22]–[24].
In real scenarios, as shown in Fig. 1a and Fig. 1b, due to
manual measurement errors during deployment or the pursuit
of higher throughput [25], [26], the tilt of the AP or antenna
orientation is common, and they may have four orientation
errors (i.e., yaw, roll, pitch, irregular tilt). It’s worth mentioning
that inaccuracies in WiFi AP’s or antenna’s orientation are
more important than inaccuracies in AP location and antenna
separation. Specifically, it takes 30 cm of AP position drift to
introduce 50 cm of localization error [24], and typically only
the exposed antennas’ separations may change. In contrast,
according to our test in a scenario that spans 3000 sq ft in
area, an orientation error of 8 ◦ causes a localization error of
1m, as shown in Fig. 1c. The reasons for orientation error and
the impact on localization systems are detailed in Section II.

Thus, precise measurement of the orientations of all APs’
antennas is anticipated to greatly facilitate the widespread
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Fig. 1: Motivation for Anteumbler: (a) Four orientation errors of AP or antennas (yaw, roll, pitch, irregular tilt). (b) The
antennas of AP have different tilted angles in real scenarios. (c) The localization error vs. the orientation error of AP or antenna.
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Fig. 2: A system that measures the antennas orientations
of WiFi APs should meet three requirements.

implementation of various WiFi-based localization systems
in real-world scenarios, ensuring sustained high accuracy
over time. For instance, regularly reporting the orientations
of all WiFi APs’ antennas within a given area can inform
calibration strategies. Specifically, in cases where AP antennas
are uniformly tilted (yaw, roll, pitch), localization systems
utilize the reported antenna orientations to accurately locate
users. Conversely, when antennas are irregularly tilted, tar-
geted calibration efforts require less manpower compared to
aimless calibration. Another more obvious effect is for the
localization systems to better estimate the user’s location by
compensating for the antenna parameters based on the reported
actual orientations of the antennas.

As shown in Fig. 2, such a system for measuring the an-
tennas orientations should satisfy the following requirements:

• Non-invasive measurement. The system should be capa-
ble of measuring the orientations of WiFi APs antennas
within an unfamiliar environment. Crucially, this process
should not rely on prior information about the antennas,
require additional sensors like gyroscopes or cameras
on the APs, or necessitate any hardware or firmware
modifications to the APs.

• Accurate antennas’ orientations. Our objective is to
achieve a localization error of less than 1m within
an area equivalent to 3000 sq ft . Therefore, considering
the impact of antenna orientation errors on localization
accuracy as depicted in Fig. 1c, the system’s antenna
orientation prediction error should be no greater than 8 ◦.

• Low time-cost. The system should efficiently measure
the orientations of AP antennas, particularly in scenarios
with thousands of APs, ensuring the measurement time

does not exceed that of manual measurement. For in-
stance, based on our survey findings, manually measuring
the orientations of four antennas on a single AP typically
takes several minutes.

Unfortunately, to the best of our knowledge, most cur-
rent systems cannot satisfy all of the above requirements
simultaneously. Generally, there are following methods to
measure antenna orientation: (i) The manual solutions are
time-consuming, laborious, and prone to human error [27];
(ii) The sensor-based methods require special sensors to be
installed on the antenna, which is inconvenient [28], [29]; (iii)
Vision-based solutions have higher requirements for line-of-
sight and highlight [30]; (iv) In addition, there are some recent
works provide high-precision acquisition of APs orientations
based on WiFi signal, but they can only measure orientations
of APs in the horizontal plane (Fig. 1a (i)) [24], [25].

In this paper, we propose Anteumbler that measures the ori-
entations of each of WiFi APs’ antennas in the physical space
non-invasively, accurately and efficiently. The feasibility stems
from the fact that antennas in wireless communication systems
have different radiation or reception capabilities for different
directions in the space. Thus, we can utilize electromagnetic
wave transmission principles to correlate the received power
with the spatial angle of the AP antenna.

However, there are three main challenges:
(i) We are unable to obtain all the antenna parameters

relevant to electromagnetic wave propagation. Due to the lack
of prior data on AP antennas and the inability to modify
the APs, parameters such as antenna gain and polarization
mismatch factor cannot be acquired. Thus, directly measuring
antenna orientation based on existing models is not feasible.

(ii) Various factors can interfere with antenna orientation
measurements. In wireless links, received power is influenced
by factors such as propagation distance and environment. Since
the precise environment is typically unknown in advance,
determining the propagation distance of the signal in the
medium and the attenuation caused by other factors becomes
challenging. Consequently, directly establishing the relation-
ship between received power and antenna orientation across
all orientations is difficult.

(iii) To our knowledge, we are the first WiFi-based system
capable of measuring the orientations of each AP antenna
within physical space. Achieving this on shorter time than
manual measurements (e.g., minute-level) presents a challenge.
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Our solutions. The key idea comes from the fact that there
is a mapping between the electric field angles of the Tx-Rx
antenna pair and the spatial angles of the local antennas (i.e.,
the antennas used in Anteumbler). (i) Firstly, considering that
received power is maximized when the local antenna and AP
antenna are perfectly aligned, we construct a spatial angle
model, which calculates the law of the received power with
the local antenna spatial angle. This eliminates the effects
of unknown antenna parameters. (ii) Secondly, we disam-
biguate the received power according to the orthogonality
of antenna directivity and polarization, and construct vertical
planes perpendicular to line of sight (LoS) paths. Specifically,
we first obtain several local maxima only on these vertical
planes, and then combine to obtain the global maximum to
obtain the AP antenna orientation, thereby optimizing the time
cost. We adopt an iterative algorithm to further improve the
efficiency. (iii) Thirdly, we describe the AP antenna as a 3-
D vector, and construct horizontal planes based on the AP
antenna and its projection in the vertical plane. We use the
intersection of two horizontal planes to determine the AP
antenna orientation, which eliminates the influence of WiFi
signal propagation distance between vertical planes. We further
improve the accuracy by removing the effect of distance within
the vertical plane and filtering out ambient noise.

The main contributions of this paper are as follows:
• We propose Anteumbler, to the best of our knowledge, the

first attempt to measure the orientation of each antenna
of AP in physical space based on WiFi signals. The
advantage of Anteumbler is that the orientation of each
antenna can be measured without prior data and without
hardware/firmware modifications to APs.

• We design an optimization algorithm combining received
power disambiguation with an iterative estimation pro-
cess, which reduces the sampling points by hundreds of
times, thus greatly improving the efficiency. We also build
a dual plane intersection model to remove the influence
of propagation distance, which improves the accuracy.

• We implement Anteumbler based on a WiFi network
interface card (NIC) combined with a simultaneous
localization and mapping (SLAM) robot. We test our
proposed model and techniques in the real world, for
different antenna types, geometries, AP heights and envi-
ronments, to obtain median errors of both elevation and
azimuth angles below 6 ◦. Furthermore, we demonstrate
the effectiveness of Anteumbler through case studies
comparing state-of-the-art reverse localization and user
localization systems.

II. MOTIVATION

Antenna orientation errors are common in real scenar-
ios. In general, the antennas of APs have four orientation errors
relative to the physical space, as shown in Fig. 1a. Among
them, yaw, roll and pitch show that all parallel antennas
change orientations with the APs, and irregular tilt indicates
that the tilt angles of the AP antennas are different. Through
the investigation of 500 WiFi APs in office buildings, we
found that the antennas of more than 80% APs are tilted

with angle greater than 5 ◦, as shown in Fig. 1b. There are
two main reasons: (i) In the process of deployment and use,
there are inevitable manual measurement errors or external
force interventions that cause the APs or antennas to tilt
slightly [24]. (ii) To achieve higher throughput, the antennas
on the APs are required to be placed in optimal positions to
avoid thick concrete walls and reduce dead spots [20], [26].

Antenna orientation errors reduce localization accuracy.
All of the above errors in antennas orientations reduce the
accuracy of the localization systems based on RSSI and CSI.
Specifically, according to the Friis transmission formula [31],
the antenna tilt causes the Rx received power to change, which
affects the RSSI measurement value, and then affects distance
estimation result based on RSSI [18], [22], [23]. In addition,
antenna orientation error also cause the separation of the array
to change, which in turn affects the estimation values of AoA
and ToF based on the phase of CSI [3], [24].

To verify how errors in orientations of APs or antennas
affect localization accuracy, we deployed a state-of-the-art
localization system in a scenario that spans 3000 sq ft in
area, containing four APs equipped with three antennas. We
tilt the four APs or antennas at different angles to simulate
the orientation error based on the four cases in Fig. 1a, and
use an algorithm similar to SpotFi [3] to locate the user’s
100 different locations. From Fig. 1c, the localization error
increases with the increase of the antenna orientation error, and
an orientation error of 8 ◦ leads to a median localization error
of 1m. Therefore, if we locate the user based on the wrong
antenna orientation, the localization accuracy is reduced.

III. PRELIMINARIES

A. Friis Transmission Formula

The Friis transmission formula [31] is used to determine
the power received by a lossless and load-matched antenna in
a radio communication link [32], [33]:

Pr =
PtGtGrλ

2

(4πd)2
, (1)

where Pt, Pr, Gt and Gr are the power and gains of Tx and Rx
antennas, λ is the wavelength, d is the distance between two
antennas. For the application of Friis transmission formula
to be valid, several conditions must be met [32], [33]: (i)
d≫ λ, i.e., one antenna must be in the far field of the other.
(ii) Antennas should be properly aligned and possess identical
polarization. (iii) Antennas must operate in free space, devoid
of multipath effects. (iv) Directivities are assumed to be
equivalent to that of isotropic radiators.

B. Antenna Directivity and Gain

Fig. 3a depicts a point radiation source represented in
spherical coordinates within free space, where the center of
the sphere is the antenna phase center [32]. However, antenna
usually has directivity, and its radiation space is not uniform.
A power pattern is a 3-D quantity that describes power as a
function of the spherical coordinates θ and ψ [34], [35]. Fig. 3b
depicts the radiation pattern of an omnidirectional antenna.
The horizontal-plane pattern shows the uniform radiation of
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pattern of omnidirectional antenna. (c) Effect of directivity on received power. (d) Effect of polarization on received power.
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360 ◦. The elevation-plane pattern shows a beam with a
certain width, which has the maximum radiation along the
θ = 0 ◦ direction. The antennas of WiFi APs are generally
omnidirectional antennas [36]. Therefore, in this paper, we
only consider omnidirectional antennas.

The directivity of antenna is the ratio of the maximum
radiated power density to its average on a spherical surface
in the far-field region. For an omnidirectional antenna [32]:

D(θ) =
4π∫∫

4π

Pn(θ)dΩ
, (2)

where Pn(θ) is the normalized power pattern. Fig. 3c shows
the effect of antenna directivity on received power, in partic-
ular the received power is maximized when the main lobes of
the two antennas are in the same direction. Antenna gain is a
practical parameter, which can be expressed as [37]:

G(θ) = ηD(θ), (3)

where η is the antenna efficiency related to hardware [32].

C. Antenna Polarization Matching

Polarization serves as a crucial characteristic of antennas,
delineating the trajectories of electric and magnetic field vec-
tors as electromagnetic waves traverse space [19], [38]. When
Tx and Rx antennas have the same polarization direction, the
received signal is the strongest, which is polarization matching.
Fig. 3d shows the effect of antenna polarization on received
power, and the received power is maximized when the two
antennas are parallel. For linear polarization, the polarization
mismatch factor of the power is [32]:

F = cos2ϕ, (4)

where ϕ is the difference of inclination between Tx and Rx.
If the Tx is rotated in space, the received power of the Rx
reduces accordingly due to polarization mismatch.

IV. OVERVIEW

A. Problem Statement

As shown in the left part of Fig. 4, we refer to the
antennas of WiFi AP to be estimated as target antennas, and
the antennas used in Anteumbler as local antennas. We first
briefly introduce the problem of estimating target antenna’s
orientation in physical space, including the elevation angle
(E angle) αi

obj and azimuth angle (A angle) βi
obj , where i is

the reference number of the target antennas. In our research,
we assume that the location of each target antenna is known,
which can be determined using a method like LocAP [24].
Note that the errors of antenna separation in LocAP increase
greatly when the target antennas are tilted. But the errors have
no effect on our research, because we are concerned with the
true location of the target antenna (especially the antenna ele-
ment). Specifically, based on the determined location of each
target antenna, Anteumbler takes state-series WiFi signals HHH =
{Hαi,βk

| αi ∈ [0, 2π), βk ∈ [0, 2π)} from the local antennas
during several different states (combinations of E angle and
A angle (αi, βk)) as input, and then derives the orientations
of all target antennas (α1

obj , β
1
obj , α

2
obj , β

2
obj , · · · ).

B. Anteumbler Architecture

Platform implementation & data processing. We control
Anteumbler to collect CSI. Then, we filter out CSI acquired
under non line of sight (NLoS) or dynamic conditions, and
leverage dual antennas to mitigate hardware noise.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3485228

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 31,2024 at 07:34:54 UTC from IEEE Xplore.  Restrictions apply. 



5

(a)

θ

X

Z

Local 
Antenna YTarget 

Antenna

Projection of  Local 
ZAntenna on Yo

o
Projection of  Local 
Antenna on XoZ

β

α

: P_angle;  θ: D_angle 
: E_angle;  β: A_angle

φ

α
φ 

(b) (c)

Fig. 5: Unknown antenna parameters effect removing: (a) For a target-local antenna pair, the received power can be
expressed as the function of ϕ and θ, and reaches the maximum when (ϕ = 0, θ = 0). (b) Through coordinate transformation,
we convert the unknown (ϕ, θ) of the antenna pair to the known (α, β) of the local antenna; note that (α = αobj , β = βobj)
corresponds to (ϕ = 0, θ = 0). (c) For a target antenna with fixed orientation, the received power can be expressed as the
function of α and β of the local antenna, and reaches the maximum when (α = αobj , β = βobj).

Removing the effect of unknown antenna parameters
(ϕ, θ). We reconstruct the Friis transmission formula to a
spatial model, which quantifies the received power based on
the known spatial angles (α, β) of the local antennas.

Optimizing the time cost of estimating antenna orienta-
tion. We construct the vertical and horizontal planes according
to the LoS path of the antenna pair, and employ an iterative
algorithm within each vertical plane to enhance efficiency.

Eliminating the influence of propagation distance. We
apply the spatial geometry principle, which asserts that the
intersection of two planes is a unique line, to eliminate the
impact of propagation distance.

V. SYSTEM DESIGN

A. Removing the Effect of Unknown Antenna Parameters

Estimating antenna’s orientation based on antenna pa-
rameters. To estimate the orientation of the target antenna, we
construct an antenna system consisting of the target antenna
and the local antenna. By incorporating Equation 1 and Equa-
tion 4, and accounting for antenna directivity and polarization,
we compute the received power Pr of the local antenna:

Pr = kcos2ϕ · PtG(θt)G(θr)λ
2

(4πd)2
, (5)

where k is the antenna efficiency factor, which is a constant,
ϕ is the polarization mismatch angle, Pt is the transmit power
of the target antenna, Gt and Gr are the gains of target
antenna and local antenna, λ is the wavelength, and d is the
distance between two antennas. It is evident that changes in
D angle (θt, θr) and P angle ϕ result in variations in the
received power. Consequently, upon obtaining the received
power P (ϕ, θ), we can determine the relative angle between
the target antenna and the local antenna:

f(ϕ, θ) =
P (ϕ, θ) d2

Pt λ2
= f1(ϕ)f2(θ), (6)

where θ is the relative directivity angle between the target
antenna and local antenna, which is independent of ϕ, f(ϕ, θ)
is the product of two terms respectively depending on ϕ, θ
and reaches the absolute maximum when the two antennas
are perfectly aligned (i.e., ϕ = 0, θ = 0); see also Fig. 5a.

Estimating antenna’s orientation based on spatial angles.
Given that ϕ and θ are unknown, the mapping f(θ, ϕ) is

unavailable. However, when the spatial angle (αobj , βobj) of
the target antenna remains constant and the spatial angle (α, β)
of the local antenna is known, we can convert the unknown
angles (ϕ, θ) to the known angles (α, β), as depicted in Fig. 5b.
Subsequently, we can establish the mapping of the spatial
angle of the local antenna to the received power:

g(α, β) =
P (α, β) d2

Pt λ2
, α ∈ [−π

2
,
π

2
), β ∈ [−π

2
,
π

2
), (7)

where P (α, β) is the received power when E angle is α and
A angle is β of the local antenna, g(α, β) is the function
related to α and β, and reaches the absolute maximum when
the two antennas are perfectly aligned (i.e., α = αobj , β =
βobj), as shown in Fig. 5c.

Complexity analysis. In principle, traversing the orientation
of the local antenna in physical space to obtain the received
power and generate a set of g values is feasible. However, this
approach necessitates the collection of a substantial amount
of data. For instance, the time required to obtain one g is
1 s, encompassing the acceleration time of the motor, as well
as the time for collecting and processing CSI. With each
step angle set to 2 ◦, the time required for traversal becomes
(180/2)3 = 72 900 s = 202.5 h, rendering it impractical.
Hence, optimizing the time cost is imperative to enable the
system to swiftly estimate the target antenna orientation.

B. Optimizing Time Cost of Estimating Antenna Orientation

Received power disambiguation. To mitigate the time cost,
we initially address the issue of ambiguity in the received
power. As depicted in Fig. 6a, multiple distinct (α, β) pairs
may yield the same (ϕ, θ) values, consequently resulting in
identical received power readings, leading to ambiguity. This
phenomenon arises due to the correlated nature of α and β,
as they jointly influence the received power. Noting that ϕ
and θ are independent of each other, we can convert angles of
(α→ ϕ, β → θ) for received power disambiguation.

We then describe the process of antenna orientation estima-
tion after angle conversion. As shown in Fig. 6b, we construct
multiple mutually perpendicular planes based on the LoS path
from the target antenna to the local antenna. We call the
vertical plane (Πβ1

,Πβ2
, · · · ) perpendicular to the LoS path
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Fig. 6: Time cost optimization and propagation distance influence removing: (a) The local antenna exhibits same received
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and the horizontal plane (Π1,Π2, · · · ) parallel to the LoS path.
First, we rotate the local antenna in one certain vertical plane
Πβk

, and the E angle is α. This process is carried with fixed
(θ = θk), thus the function g is only related to ϕ (α → ϕ).
Hence, in plane Πβk

, we obtain:

g1k(α) = g(α, β)|β=βk
=

P (α)d2

f2|θ=θkPtλ2
, k ∈ [1,K], (8)

where K is the number of vertical planes. As shown in Fig. 6c,
we get a E angle αβk

corresponding to the relative maximum
of g1k(α) in plane Πβk

:
αβk

= argmax
α

g1k(α), (9)

where g1k(α) reaches the relative maximum only when ϕ = 0,
and α = αβk

at this time. Second, for the relative maximum
of each vertical plane, we fix ϕ (ϕ = 0), so the function g is
only related to θ (β → θ). Hence, in plane Πk, we can obtain
the following:

g2k(β) = g(α, β)|α=αβk
=

P (β)d2

f1|ϕ=0Ptλ2
, k ∈ [1,K]. (10)

As shown in Fig. 6c, we can measure an absolute maximum
of g2k(β) in planes Πk and get the angle:

βobj = argmax
β

g2k(β), (11)

where g2k(β) reaches the absolute maximum only when
θ = 0, and α = αobj , β = βobj at this time. Obviously, the
g(αobj , βobj) is the absolute maximum in different horizontal
planes, and is also the absolute maximum in different vertical
planes. Therefore, the angle combination (αobj , βobj) is the
orientation of the target antenna in physical space.

Iterative algorithm. Naively, we can measure g over the
range [−π/2, π/2) of (α, β), but the time cost is still huge. For
example, traversing the range of α in each vertical plane, and
assuming that the time cost to obtain one g is 1 s, the steps of
α and β are 2 ◦, then the time cost is (180/2+1)2 = 8281 s ≈
138min. To further optimize the time cost, we aim to reduce
the number of vertical planes and measurements within each
vertical plane. The key insight is that the closer the vertical
plane is to perfect alignment, the greater the projection’s
E angle, as depicted in Fig.6b. Consequently, we can swiftly
estimate αobj and βobj in an iterative fashion. Initially, we
execute the procedure outlined in Equations8-11 within only

two adjacent vertical planes to discern the orientation trend of
the target antenna (average time cost: ((180/2)/2)×2 = 90 s).
Subsequently, we adjust the position and orientation of the
local antenna towards this trend based on the previous vertical
plane’s state, until the absolute maximum is reached (average
time: (180/2)/2 = 45 s). The total time cost is 135 s. However,
the iterative algorithm heavily relies on measurements from
the previous state. Errors in g can significantly impact the
accuracy of the target antenna orientation. Therefore, we
need to mitigate factors that influence g, such as propagation
distance d and ambient noise.

C. Eliminating the Influence of Propagation Distance

To remove the influence of propagation distance on g, our
primary approach is to ensure that measurements in each
vertical plane are independent. An important observation is
that the projection of the target antenna in each vertical plane
corresponds to the relative maximum of g within that plane,
as shown in Fig. 6b. Then, we can obtain the target antenna
orientation by utilizing two independent vertical planes based
on the spatial geometry principle of “intersection of two
intersecting planes”. The specific solution is given below.

In the following, both the target antenna and the local
antenna are described as 3-D vectors. The unit direction vector
of the target antenna is defined as:

êd = (sin α̂m
obj cos β̂

m
obj , sin α̂

m
obj sin β̂

m
obj , cos α̂

m
obj), (12)

where m ∈ [1, · · · ,M ] and M is the number of target
antennas. The unit normal vector of vertical plane Πβk

at βk:

enβk
= (cosβk, sinβk, 0), for k = 1, 2, · · · ,K. (13)

In plane Πβk
, the E angle is α̂m

βk
when P reaches its relative

maximum, and the local antenna is the projection of the target
antenna in the vertical plane, so the unit direction vector of
projection is:

êdβk
= (− sin α̂m

βk
sinβk, sin α̂

m
βk

cosβk, cos α̂
m
βk
). (14)

Thus, the unit normal vector of the plane Πk constructed by
the target antenna and its projection:

ênk
= êdβk

× enβk

= (cos α̂m
βk

sinβk,− cos α̂m
βk

cosβk, sin α̂
m
βk
).

(15)
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Fig. 7: Data processing: (a) Dynamic packets can be identified by the variance of subcarriers’ gradient. (b) NLoS identification
based on dual antenna phase difference variance. (c) Received power ratio after filtering hardware noise by dual antenna ratio
and data smoothing. (d) We estimate the E angle of target antenna based on the extracted received power ratio.

Algorithm 1 Estimating Target Antennas’ Orientations.
Input: Power of Local Antennas at state αi of position βk: P =
{P 1

(α0,β0)
, · · · , PM

(α0,β0)
}, · · · , {P 1

(αi,βk)
, · · · , PM

(αi,βk)
}, · · · },

the number of position K, the number of target antennas M.
Output: Target antennas orientations: (α̂1

obj , β̂
1
obj , · · · , α̂M

obj , β̂
M
obj).

1: for k ← 1; k <= K; k ++ do
2: flag forward = zeros(M);
3: flag backward = zeros(M);
4: i← 0;
5: while notall(flag backrward) == 1 do
6: Motor rotates clockwise, i← i+ 1;
7: if Pm

(αi,βk)
< Pm

(αi−1,βk)
then

8: flag backward(m-1) = 1;
9: end if

10: end while
11: while notall(flag forward) == 1 do
12: Motor rotates counterclockwise, i← i+ 1;
13: if Pm

(αi,βk)
< Pm

(αi−1,βk)
and Pm

(αi−2,βk)
< Pm

(αi−1,βk)

then
14: α̂m

βk
← αi−1;

15: flag forward(m-1) = 1;
16: end if
17: end while
18: end for
19: for m← 1;m <= M ;m++ do
20: (α̂m

obj , β̂
m
obj)← Equation 16;

21: return (α̂m
obj , β̂

m
obj).

22: end for

In theory, êd should always be perpendicular to ênk
:

êd • ênk
= 0, for k = 1, 2, · · · ,K. (16)

Next, we estimate the E angle α̂m
obj and the A angle β̂m

obj

based on measurements from two distinct vertical planes.
Furthermore, we employ an iterative algorithm to swiftly de-
termine the relative maximum α̂m

βk
within each vertical plane,

with an average time cost of (180/2/2)×2 = 90 s. Finally, we
leverage multiple vertical planes to address the least squares
problem and enhance accuracy. The process of estimating the
target antenna orientation is given in Algorithm 1. Addition-
ally, while the propagation distance undergoes slight changes
as the local antenna rotates within each vertical plane, these
alterations are minor and are analyzed in Section VI-B.

D. Data Processing

Reflected power reduction. Up to this point, we have
assumed the existence of only one LoS path from the WiFi
AP to the robot. However, the presence of multipath in

Direct PathReflectio
n Path 

Electromagnetic 
shielding material

D1

L1

L
D

Fig. 8: We add electromagnetic shielding material around
the local antennas to reduce the reflected power since the
direction of the direct path is known.

the environment can introduce significant inaccuracies to our
algorithms due to distortions in power measurements. Our
observation is that the LoS path is known in our problem as
mentioned in Section IV-A, so we can mitigate the power of
multipath reflections through hardware measures. Specifically,
we have incorporated materials around the local antennas that
are readily available and effectively shield electromagnetic
wave signals [39]. The reflected signal is shielded when the
propagation path meets the condition: D

L < Di

Li
, where D and

L are the dimensions of the electromagnetic shielding box, Di

and Li are the distance components of the i-th reflection path
to the electromagnetic shielding box in two vertical directions,
as shown in Fig. 8.

Dynamic environment identification. The dynamic exter-
nal environment also affects the measurement of CSI, thereby
affecting the estimation accuracy of the antenna orientation.
We use the variation of the phase gradient between subcarriers
to identify the dynamic environment, similar to the method
in [40]. As shown in Fig. 7a, the gradient variance of the static
environment should be smaller. Next, we directly remove the
CSI of the dynamic environment.

NLoS identification. Another critical factor to consider is
the presence of NLoS, especially when the local antenna ro-
tates within the same vertical plane, the simultaneous presence
of LoS and NLoS situations can result in significant power
fluctuations [41], [42], making accurate measurement of the
projection challenging. To address this, we employ a method
similar to PhaseU [43] to identify LoS/NLoS conditions.
Specifically, NLoS conditions involve more abundant reflec-
tions, diffractions, and refractions, leading to signals traveling
through NLoS paths behaving more randomly in terms of
amplitude and phase [43]. We quantify the difference between
LoS and NLoS by incorporating the frequency diversity feature
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Fig. 9: Generalizing to 3D: Hap is the vertical height from
target antenna to local antenna, where the vertical planes
are inclined to the ground but perpendicular to LoS.

as a weight parameter to compute the spatial phase difference
variance of the two antennas. As shown in Fig. 7b, LoS/NLoS
can be distinguished based on a certain threshold. To create
NLoS conditions, we utilize two different types of obstacles
that are relatively common in the real-world (concrete pillar
and wooden board). Specifically, we set the threshold at -20dB
(based on empirical values from our test environment), and
consider it as NLoS when the variance exceeds the threshold.
Subsequently, we optimize the algorithm: if NLoS is identified,
the target antenna is not measured at this position, and we
proceed to the next position instead.

Hardware noise filtering. We employ an industrial per-
sonal computer (IPC) equipped with NIC to collect CSI. How-
ever, the accuracy of CSI estimation is influenced by hardware
noise, including uncertainties in power control due to au-
tomatic gain control (AGC) and electromagnetic noise [44].
In the case of multi-input multi-output (MIMO) systems, the
noise levels across multiple antennas at the same sample tend
to be similar, enabling the utilization of the dual antenna
ratio for filtering hardware noise [45]. As depicted in Fig.7c,
the power ratio exhibits greater stability compared to using
a single antenna. Subsequently, we extract stable received
power based on the CSI processed through the aforementioned
methods, as shown in Fig.7d, which effectively facilitates
accurate measurement of the E angle of the target antenna.

It is worth noting that the data packet rate of commercial
WiFi devices may be relatively low, so we provide a specific
analysis here. In data processing, dynamic environment identi-
fication filters out any packets with significant fluctuations, and
NLoS identification can be completed across the entire vertical
plane. The dual-antenna ratio method is also independent of
the data rate. Therefore, in Anteumbler, we can consider that
the CSI data packet rate does not significantly impact our
measurement accuracy.

E. Generalizing to Three Dimensions
Anteumbler can be generalized to 3-D. This generalization

is important, because APs are usually located above ground,
around 2m in real-world deployments. To better understand
our solution, consider a situation where the target antenna
is above the vertical height Hap from the local antenna, as
shown in Fig. 9. We can construct Anteumbler based on the
vertical planes, where the vertical planes are not perpendicular
to the ground, and the tilt angle is: Θ = arctan

Hap

dap
, dap is

the horizontal distance from the local antenna to the target
antenna. We convert 3-D to 2-D, and get the orientations of
the target antennas using Equation 9 and Equation 16.

Local Antennas

Electromagnetic 
Shielding Material

Gyroscope
WT61C

Motor and
Control Suit

IPC with
IWL5300

Lidar
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X
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Z
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d' γ
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Y
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Fig. 10: Platform: (a) Anteumbler. (b) Phase center offset of
local antenna due to rotation (γ in the horizontal plane, π/2−δ
in the vertical plane, and d′−d in distance). (c) Effects of bot’s
position error (∆r → ∆β).

VI. PLATFORM IMPLEMENTATION

A. Anteumbler Implementation

As shown in Fig. 10a, we build Anteumbler based on an
IPC with WiFi NIC IWL5300, and with Intel Core i7-5550U
CPU and 4GB RAM, running on Ubuntu 14.04 LTS. We
install Linux 802.11 CSI Tool on the IPC and keep it in
communication with the target WiFi APs to collect CSI [46].
The local antennas are perpendicular polarized omnidirectional
dipole antennas with an element length of 4 cm. We use a
two-phase stepper motor UMot 57HS5417-21-500U [47] with
a motion control suit and a two-way relay to control the
rotation of local antenna 1. We add electromagnetic shielding
material [48] around the local antennas to shield most of
the reflected path signal. We fix a high-precision gyroscope
WT61C [49] at the center of the local antenna 1 to measure
this antenna’s angles in physical space.

Then, in order to automatically measure the antennas’
orientations of WiFi APs, we mount the above system on
the TurtleBot platform [50], a low-cost open-source robotics
development kit. We mount the Hokuyo UTM-30LN LI-
DAR [51] to capture most obstacles in the environment. We
place the local antennas on the top of TurtleBot to have the
widest field of view. TurtleBot is controlled via the Robot
Operating System (ROS Kinetic), giving us access to a number
of software packages for SLAM and navigation. We choose
Gmapping [52] as the SLAM algorithm to construct the
physical map, and make TurtleBot autonomously navigate
to several target points around the target AP. Next, before
evaluating Anteumbler, we need to determine how the local
antennas and robot affect our system.

B. Phase Center Offset of Local Antennas

The antenna phase center is an equivalent parameter, and
is the actual reference point of receiving or transmitting [53],
[54]. In this paper, the local antenna is dipole antenna whose
phase center is in the plane of its main lobe [32]. In theory, we
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Fig. 11: Experimental setup: (a) Experimental deployment. (b) Hall: A weak-multipath-level scenario. (c) Office: A strong-
multipath-level scenario. (d) Six different types of antennas and two different antenna layouts.

can use the geometric position corresponding to the maximum
gain direction of the local antenna as the rotation point to
make it rotate within the vertical plane. In practice, however,
we cannot accurately fix the rotation point in the direction
of maximum gain of the local antenna 1, so the phase center
varies within the vertical plane. As shown in Fig. 10b, h is
the height from the real phase center to the rotation point,
and d is the propagation distance from the target antenna
to the local antenna. When the antenna rotates by α, the
propagation distance from the target antenna to the local
antenna is d′, and γ and δ are the drift angle in the horizontal
plane and the complement of the drift angle in the vertical
plane respectively. According to their geometric relationship,
the following equations are established:

h− h cosα = d′ cos δ

h sinα = d tan γ

d′ sin δ = d sec γ.

(17)

Then, we solve the system of equations:
γ = arctan

h sinα

d

δ = arctan

√
h2 sin2 α+ d2

h(1− cosα)

d′ =
√

2h2(1− cosα) + d2.

(18)

For an omnidirectional antenna, the offset angle γ of the local
antenna 1 in the horizontal plane is the same. When the height
from the rotation point to the phase center h < 5 cm and the
propagation distance d > 3m, then δ > 89 ◦ and d′ − d <
0.13 cm. We fix the rotation point of the local antenna 1 at a
position less than 5 cm below the center of the antenna, so that
the influence of the phase center offset can be ignored. Note
that both h and d in Equation 18 can be flexibly replaced.

C. Effects of Bot’s Position Error

We use Gmapping as the SLAM algorithm and navigate the
robot, so it is necessary to analyze the impact of navigation
errors on Anteumbler. In our antenna orientation estimation
algorithm, the dual-plane intersection model operates inde-
pendently of the propagation distance. Therefore, the issue
related to the SLAM navigation that might affect Anteumbler’s
accuracy is the position error of the robot itself. We first
test the reported position error of the robot, and we can
obtain that the median error ∆r is around 10 cm. Anteumbler
requires that the local antenna 1 rotate within the plane

perpendicular to LoS. Therefore, the error of robot position
is represented by the mapping of the target antenna to another
plane: βk → (βk +∆βk), as shown in Fig. 10c, the error of
this A angle is ∆βk. When the propagation distance d > 3m,
we can get ∆β < arctan 0.1

3 ≈ 1.9 ◦, so the effects on ∆βk
can be neglected in Equation 15. As for the orientation of the
robot, we use the high-precision gyroscope WT61C to correct
it, so the orientation error can also be ignored.

VII. EVALUATION

A. Experimental Setup

We evaluate Anteumbler’s performance in two real-world
environments. The first scenario is a hall with weak multipath
effects, spanning 6500 sq ft , as shown in Fig.11a and Fig.11b.
In the hall, we deploy six APs, covering both LoS and NLoS
conditions (with obstacles such as pillars and boards). The
second scenario is an office with strong multipath effects,
covering an area of 1800 sq ft , as shown in Fig.11c. In
the office, we place two APs to capture varying multipath
information. Across these eight AP locations, depicted in
Fig.11d, we test two antenna geometries (linear and triangular
layouts) and six different antenna types (all perpendicularly
polarized omnidirectional antennas). Additionally, we vary the
AP heights to evaluate the 3-D effects, as shown in Fig. 15a.
We use a high-precision gyroscope WT61C as the ground truth
for the orientations of the target antennas. It is worth noting
that although we use test scenarios with areas different from
those in Section I, it still meets our requirement of achieving
less than 1 m of localization error in an area equivalent to
3000 sq ft , as the average area of these two scenarios is greater
than 3000 sq ft .

B. Microscopic Benchmark

Baseline accuracy of E angle. To verify the baseline
accuracy of E angle, we fix one target antenna on a stepper
motor and rotate it to 0 ◦, 20 ◦, 45 ◦, 70 ◦, 90 ◦ (i.e., αobj) as
depicted in Fig. 11a, and then estimate them. We place robot
in LoS condition and rotate the local antenna 1 from −90 ◦ to
90 ◦ (i.e. αi) with a step length of 2 ◦ for a total of 90 states. In
each state, we collect one second CSI to calculate the received
power ratio, and repeat this process 100 times. Note that the
target antenna is parallel to the rotation plane of the local
antenna, i.e., the A angle of the local antenna and the target
antenna are always consistent (i.e., βobj = βk). Considering
that APs are placed in different locations resulting in different
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different antenna layouts (L1: triangular layout, L2: linear layout) and two different antenna separations (λ/2 and λ).

LoS propagation distances. To mimic this, we set the LoS
distances to 3m, 4m, 5m, 6m and collect CSI to estimate
E angle. Further, APs usually operate at 2.4GHz or 5GHz
bands with 20MHz or 40MHz bandwidth, so we collect CSI
with the same setup for 5GHz/40MHz and 2.4GHz/20MHz.
The baseline accuracy of E angle is shown in Fig. 12a,
and the E angle errors under all conditions are below 6 ◦.
Among them, the accuracy of the LoS distance 4m and 5m
is better than that of 3m and 6m. This is due to platform
implementation. Specifically, the phase center offset of local
antenna and the error of robot are larger when the distance is
short, and the multipath effect increases when the distance is
long. Hence, in order to obtain better accuracy, we control the
LoS distance to the optimal 4m-5m. In addition, the accuracy
of 5GHz/40MHz is better than that of 2.4GHz/20MHz,
which is caused by the different influence of CSI noise.

Effect of A angle on projection E angle. Since we rotate
the local antenna 1 in different vertical planes and obtain the
E angle of its projection in each vertical plane, we need to ver-
ify the accuracy of the projection E angle in different vertical

planes, i.e., the effect of A angle on projection E angle. We
fix one target antenna on a stepper motor and rotate it to 10 ◦,
30 ◦, 60 ◦ (i.e. αobj) and A angle is fixed to 90 ◦ (i.e. βobj).
Then we collect CSI by rotating the local antenna 1 in the
vertical planes with A angle of −90 ◦, −65 ◦, −45 ◦, −20 ◦,
0 ◦, 20 ◦, 45 ◦, 65 ◦, 90 ◦ (i.e. βk) and calculate the projection
E angle respectively, and we repeat this process 100 times. We
use Equation 16 in combination with sin2 α̂βk

+cos2 α̂βk
= 1

to calculate the ground truth of the projection E angle. As
shown in Fig. 12b, the projection E angle errors are below
6 ◦ for different vertical planes.

Physical orientation accuracy of target antenna. Based
on the above two baseline tests, we estimate the physical
orientation of the target antenna in the hall scenario. We set
the three antennas on each WiFi AP to different orientations,
for example, AP1 = {(30 ◦, 0 ◦), (45 ◦, 0 ◦), (45 ◦, 0 ◦)}, and
AP2 = {(0 ◦, 0 ◦), (45 ◦, 0 ◦), (30 ◦,−90 ◦)}. For each AP, we
rotate the local antenna 1 with a step length of 2 ◦ in the
vertical planes around it to collect CSI, where A angle of the
vertical planes are −90 ◦, −65 ◦, −45 ◦, −20 ◦, 0 ◦, 20 ◦, 45 ◦,
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Fig. 16: Impact of environments: (a) Accuracy of E angle and (b) Accuracy of A angle in three different LoS scenarios. (c)
Accuracy of E angle and (d) Accuracy of A angle in three different NLoS scenarios.

65 ◦, 90 ◦ (i.e. βk). We then estimate the physical orientations
of the target antennas based on some two vertical planes
combined with least squares, and the results are shown in
Fig. 13a and Fig. 13b. We further compare the estimation
accuracy using two vertical planes with different spacing (i.e.
Diff(βk−βk−1)). It can be seen from Fig. 13a and Fig. 13b that
as the spacing of the vertical planes increases, the estimation
error decreases, and the best accuracy is achieved when the
spacing is 90 ◦. At this time, the median error of E angle is 3 ◦,
and the median error of A angle is 4 ◦. The reason for this is
that when the vertical plane spacing is 90 ◦, the effect between
them is minimal. Therefore, we propose to use two vertical
planes spaced by 90 ◦ to estimate the physical orientation of
the antenna. Of course, when some narrow areas cannot meet
90 ◦, the spacing can be reduced.

C. Macroscopic Benchmark

Impact of antenna types. APs may be equipped with dif-
ferent antennas, and different types of antennas have different
power lobe patterns, resulting in different power attenuations.
We test six different types of antennas in the hall scenario
as shown in Fig. 11d. The heights of these six antennas are
different, and the lengths of the antenna elements are also

different. The test results are shown in Fig. 14a, it can be
seen that for different types of antennas, the median errors
of E angle are below 6 ◦, and the median errors of A angle
are also below 6 ◦. In addition, the estimation accuracy of
different types of antennas is different because the antenna
element itself is slightly bent or tilted.

Impact of antenna layouts. There are two common ge-
ometric layouts of APs, linear and triangular, as shown in
Fig. 11d, and the spacing between antennas is different. We
test two antenna layouts in the hall scenario using one type
of antenna, and the antenna spacing is set to λ/2 and λ, a
total of four combinations. As shown in Fig. 14b, the median
errors of both E angle and A angle are below 6 ◦. Among
them, L1 is triangular layout, L2 is linear layout. The reason
why the accuracy of triangular layouts is better than that of
linear layouts is that our system uses the center of the antenna
combination as the reference point to construct LoS paths,
and the deviation of triangular layouts is smaller than that of
linear layouts, which can also be seen from the increase in the
estimation error as the antenna spacing increases.

Impact of AP heights. APs may be placed at different
heights. In order to verify the performance of Anteumbler in 3-
D, we test three antenna orientations with different AP heights
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Fig. 17: Case studies when APs or antennas are tilted: (a) Antenna separation accuracy in reverse localization with or
without Anteumbler. (b) User localization accuracy with or without Anteumbler.

(i.e., 0m, 1m, 2m) in the hall scenario, as shown in Fig.
15a. The test results is shown in Fig. 15b, it can be seen that
for different AP heights, the median errors of E angle and
A angle are all below 6 ◦.

Impact of environments. We test Anteumbler’s ability in
different environments. First, the condition of AP7 is to have
one or two strong reflections, and the condition of AP8 is
to have multiple reflections. The results are then compared
with the weakly reflected conditions in the hall scenario. As
shown in Fig. 16a and Fig. 16b, the accuracy is reduced in
complex multipath, but the median errors are all below 6 ◦.
Second, we test in different NLoS, static pillar and wooden,
and dynamic NLoS (people moving with objects). As shown
in Fig. 16c and Fig. 16d, under static NLoS, although there
is power attenuation, the attenuation trend is the same, so it
has better accuracy. However, under dynamic NLoS, the trend
of attenuation is different, so the accuracy decreases, but the
median errors are below 6 ◦.

D. Case Studies

We deploy LocAP and SpotFi, state-of-the-art reverse lo-
calization and user localization systems, in the hall scenario
to validate the effect of Anteumbler. We place four APs at
different positions in the hall and make the APs or antennas
tilted irregularly. We use a laser rangefinder [55] and a WT61C
to determine the ground truth of antennas and user.

Case study 1: reverse localization. We first deploy LocAP.
We set the antenna separation as λ and fix the orientation
of these APs. Then we move the robot along a straight line,
collect one set of CSI every 5 ◦, a total of 20 sets for estimating
the antenna separation, and repeat this process 100 times. Next,
we deploy Anteumbler to estimate the physical orientation
of these antennas and correct them. After that, the antenna
separation is estimated with the same setup. The result is
shown in Fig. 17a. Obviously, when the antennas are tilted
irregularly, the error of the antenna separation by LocAP is
greatly increased. After the antennas orientations are corrected
by Anteumbler, the error is reduced by 10mm.

Case study 2: user localization. Finally, we deploy SpotFi.
We set the antenna separation as λ/2 to obtain the best
localization effect. A user with a smartphone connects to
these four APs and moves to 40 different locations. We
collect CSI and use them to calculate user’s location. Next,
we deploy Anteumbler to estimate the physical orientation of
these antennas and artificially correct them. After that, the

user’s location is estimated with the same setup. As shown
in Fig. 17b, the error of user location by SpotFi increases
when the antennas are tilted irregularly. After the antennas
orientations are corrected by Anteumbler, the error is reduced
by more than 1m.

VIII. DISCUSSIONS

Non-linearly polarized antenna. Anteumbler currently
considers linearly polarized antennas. In addition, many re-
searches have been devoted to circularly polarized or ellipti-
cally polarized antennas for localization and sensing [14]–[16].
For elliptically polarized antennas, the electric field has com-
ponents in two directions that are perpendicular to each other
and there is a phase difference between the components [32].
We can estimate the antenna orientation by measuring the long
axis direction based on the same method of Anteumbler. Note
that the larger the ratio of the major axis to the minor axis,
the higher the estimation accuracy. For circularly polarized
antennas, where the electric field components are the same,
our model no longer applies. Fortunately, circularly polarized
antennas have no polarization mismatch.

AP with a large number of inside antennas. For antennas
embedded inside AP, Anteumbler is still a good choice, since
the overall tilt of the APs also exists, as described in Section
1 and Section 2. Furthermore, it is true that APs with a large
number of antennas or densely deployed can significantly
improve localization accuracy. However, we still hope that
Anteumbler can serve WiFi-based sensing scenarios that do
not have these deployments or require extremely high accuracy
(e.g., WiFi-based imaging and material identification), not just
ordinary localization systems.

SLAM Robot and motor platform. It should be empha-
sized that although we build Anteumbler based on the SLAM
robot to work, the design does not depend on it. Our purpose
of using robot and motor is to let us collect the required test
samples automatically, thus eliminating the need for human
intervention. In practice, the use of robot can be replaced by
humans carrying mobile devices, because the WiFi chip of the
mobile device can also collect CSI, and the IMU equipped
with it can realize the measurement of itself rotation. For
example, in such a scenario, the person moves and rotates the
handheld mobile device to collect test samples and estimate
the antennas’ orientations according to the prompts of the APP,
which would implement our methods. In such case, we would
need to give instructions to human operators (e.g., rotating the
device in the direction indicated) and deal with static reflection
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paths (e.g., humans can choose LoS subjectively), but there
are also benefits, such as no NLoS identification. We plan to
extend these in future work.

Diverse NLoS scenarios. In this paper, we evaluate two
NLoS conditions. In the real-world, concrete pillars and
wooden boards are two common types of obstacles, which
are also widely present in many new scenarios. Therefore,
our threshold-based NLoS identification scheme is still appli-
cable to many new scenarios. Additionally, Anteumbler can
utilize other devices and technologies to assist in obstacle
measurement, such as Lidar and video. However, these devices
are not effective in estimating the orientation of the AP
antenna. To address diverse NLoS scenarios, we are inves-
tigating other types of obstacles that might affect antenna
orientation estimation, including metal walls, glass windows,
and vegetation. By comprehensively considering these factors,
we hope to enhance the robustness of the system in complex
environments.

Diverse antennas and WiFi NICs. In this paper, we
use Linux 802.11n CSI Tool [46] on the IWL5300 NIC to col-
lect CSI. Currently, there are other tools available that support
obtaining CSI from various WiFi nNICs, such as Atheros CSI
tool [56], Nexmon CSI Extractor [57], and PicoScenes [58]. In
fact, our antenna orientation search algorithm does not depend
on CSI characteristics, with potential differences only in the
CSI processing. We plan to analyze the CSI of more WiFi
NICs in future work to extend the applicability of our system.
Additionally, we plan to continue deploying and testing differ-
ent models and sizes of linearly polarized antennas to validate
the robustness of Anteumbler.

IX. RELATED WORK

A. WiFi-based Localization
Due to its ubiquitous deployment, WiFi has been extensively

studied for indoor localization and tracking in the past two
decades. Some of the initial work is based on RSSI [59]–
[61], but these algorithms usually require a lot of fingerprint
to achieve decimeter-level localization accuracy. Therefore,
most recent works focus on localization algorithms based on
fine-grained CSI [2]–[4], [62]–[66], and their commonly used
localization ideas include AoA-based [2], [3], ToF-based [64],
and fusion of AoA and ToF [1]. Many systems can achieve
decimeter-level localization accuracy using commercial WiFi
devices. However, these WiFi-based localization systems do
not take into account the effects of APs’ or antennas’ orien-
tation errors, they assume that the APs’ and antennas’ orien-
tations are precisely known and parallel to ensure accurate
antenna separation for estimating user location. Compared
with the above works, we quantitatively analyze the effect of
APs’ or antennas’ orientation errors on localization accuracy,
and construct an antenna orientation estimation method that
can accurately estimate the orientation of each antenna on the
AP. The accuracy of the localization system is guaranteed by
correction the antenna orientation.

B. Reverse Localization of WiFi AP
WiFi-based localization systems assume accurate knowl-

edge of AP locations, orientations and antenna geometry, but

in the real world, these AP attribute information is often
unknown or inaccurate, making WiFi localization difficult to
deploy [24]. Reverse localization is designed to solve this
problem by obtaining AP attribute information autonomously.
There are some works on the reverse localization of WiFi
AP [24], [25], [60], [67]. LocAP [24] systematically analyzes
the influence of spatial attributes such as AP’s location, ori-
entation and antenna separation on the localization accuracy,
and based on the SLAM robot, it realizes autonomous mapping
of these spatial attributes of APs in unknown physical maps.
MapFi [25] proposes an estimation method of angle difference
of arrival (ADoA) for many heterogeneous WiFi APs and
various antenna layouts. It only needs to know the locations
of three APs in advance, so that APs with different antenna
layouts can locate each other without additional equipment.
However, they can only measure different orientations of
APs in the horizontal plane, and they all assume that all
antennas on the AP are parallel. In contrast to these works,
Anteumbler estimates the orientation of each antenna, which
in turn ensures the accuracy of WiFi AP reverse localization.

C. Estimation of Antenna Orientation or Tilt Angle

Traditionally, there are some methods to estimate the el-
evation and azimuth angles of the antenna. For example,
the antenna orientation is manually measured or calibrated
using a compass [27] or inclinometer [68]. There are also
integrated systems on the antenna that can measure the antenna
orientation [28], [29]. But these are labor intensive or require
the antenna to be equipped with sensors. In addition, vision-
based method requires sufficient lighting for the antennas to
be observed [30]. In this paper, we non-invasively estimate
antennas’ orientations (elevation and azimuth angles) based
on commercial WiFi signals. To the best of our knowledge,
Anteumbler is the first attempt to estimate antenna elevation
and azimuth angles based on commercial WiFi signals.

X. CONCLUSION

This paper presents the design and implementation of An-
teumbler, the first attempt to measure the orientation of each
AP antenna in physical space using WiFi signals. Anteumbler
delivers two primary technical innovations. First, it incorpo-
rates a spatial angle model capable of estimating antenna
orientation solely based on CSI provided by WiFi chips,
without imposing additional requirements on the APs. Second,
it integrates an optimization model that combines the orthog-
onality of electric field components, an iterative algorithm,
and spatial geometry principle to achieve precise measurement
of AP antenna orientations within minute-level time, while
also mitigating the effects of propagation distance. Real-world
experiments conducted across various antenna types, layouts,
AP heights, and environmental conditions demonstrate that
Anteumbler achieves median errors below 6 ◦ for both eleva-
tion and azimuth angles. By enabling accurate measurement of
all AP antenna orientations, Anteumbler is poised to enhance
the long-term accuracy of numerous WiFi-based localization
and sensing systems in real-world applications.
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