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ABSTRACT
In recent years, radio frequency (RF) signal-based sensing has gar-
nered significant attention due to its ubiquity, with numerous ap-
plications emerging in areas such as target localization, material
recognition, and health monitoring. However, current sensing mod-
els are often based on ray tracing, which, although computationally
convenient, can become severely distorted when the target size is
not much larger than the wavelength. Additionally, using signals
with smaller wavelengths to mitigate this issue is not always fea-
sible. Noting that RF signals are a form of electromagnetic waves,
we have explored the development of field sensing models directly
based on Maxwell’s equations. These models can finely character-
ize phenomena such as diffraction and multiple scattering, thereby
enhancing the upper limits of sensing system capabilities. Based on
this approach, we have achieved integrated material recognition
and imaging of centimeter-scale targets using WiFi signals. This
work has been accepted for presentation at Ubicomp 2024.
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1 INTRODUCTION
Due to its ubiquitous nature, radio frequency (RF) signal-based
sensing has garnered increasing attention over the past decade.
Compared to traditional sensing methods, RF-based sensing solu-
tions are cost-effective and easy to deploy, offering a wider range of
coverage. Unlike vision-based approaches, RF-based methods can
operate in low-light or non-line-of-sight conditions and provide
additional information such as material properties, aiding in better
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decision-making [1, 2]. In summary, as a valuable complement to ex-
isting sensing techniques, RF signal-based sensing exhibits unique
advantages across various fields, including health monitoring and
vehicle-to-infrastructure (V2I) coordination.

The feasibility of using RF signals for sensing is based on a fun-
damental observation: the propagation of RF signals changes with
the state of the target. To analyze the characteristics of RF signals, it
is often necessary to model and analyze the signal propagation pro-
cess. Over the past five years, many classical sensing models, such
as the Fresnel zone model, have been built based on ray tracing
models. Although ray tracing models are simple to implement and
easy to solve, they suffer from significant distortion when the tar-
get size is not much larger than the wavelength due to factors like
diffraction and multiple scattering. While it is possible to use sig-
nals with smaller wavelengths for finer-grained sensing tasks—such
as using millimeter waves for centimeter-level sensing and high-
frequency terahertz signals for millimeter-level sensing—the cost
and deployment complexity of these signals can vary greatly. In
practice, deploying the most suitable frequency band is not always
feasible. Notably, sub-6G signals, such as LTE,Wi-Fi, Bluetooth, and
RFID, which are among the most widely deployed and used, have
wavelengths exceeding 5 cm. This is comparable to or even larger
than the sizes of many common sensing targets, such as water cups,
small material boxes, and eggs. Without a high-precision sensing
model that accurately characterizes the effects of diffraction and
other factors on the signal, the ubiquitous nature of RF sensing will
be significantly limited.

Let’s return to the fundamentals: As an electromagnetic wave,
the propagation behavior of RF signals in space—whether it be
transmission, reflection, or diffraction—can be fully characterized
by Maxwell’s equations. If we can build a new paradigm for wire-
less sensing based on Maxwell’s equations, it would offer several
advantages:

(1) Enhance the performance ceiling of sensing systems. On one
hand, we have the opportunity to characterize the propagation
of RF signals with finer granularity, enabling us to attempt more
challenging sensing tasks, such as usingWiFi signals for centimeter-
level target detection. On the other hand, this approach can push
the performance limits of sensing algorithms. For example, the
resolution limit of inverse imaging schemes based on ray tracing is
𝜆, where 𝜆 is the wavelength, whereas schemes built on Maxwell’s
equations can achieve a resolution of 0.13𝜆 [6].

(2) Enhance explainability. The strong representational power
of the model allows us to quantify the interference of different
targets in the environment on RF signals, which can improve the
robustness and transferability of the system. Additionally, since
the amount of data available for building sensing systems is often
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limited, the introduction of physical prior knowledge can enhance
the model’s convergence and reduce the data requirements.

We have explored this area and proposed LiquImager, which can
perform integrated imaging and material sensing for centimeter-
scale targets using WiFi signals. This system overcomes the impact
of diffraction on RF sensing. Our evaluation shows that, compared to
black-box sensing approaches, the introduction of a field model can
reduce the required training data by 80%. The related work, "LiquIm-
ager: Fine-grained Liquid Identification and Container Imaging
System with COTS WiFi Devices," has been accepted by Ubicomp
2024 [5].

2 THE DIFFERENCES BETWEEN RAY
TRACING AND FIELD MODELS
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Figure 1: Comparison of ray tracing and field model. (a) Ray
tracing model. We equivalently represent the RF signal as
rays, treating each scattering subunits as an independent
target. The RF signal travels to the receiving antenna via
scattering within the scattering domain. We consider the
total scattering signal as the linear sum of scattering sig-
nals from different subunits. (b) Scattering model. We use
Maxwell’s equations to calculate the equivalent scattering
field of the scattering domain, which can accurately describe
the interaction between the various subdomains. After col-
lecting the scattering signals, we infer the distribution of the
complex permittivity in the scattering area.

For ray tracing-based imaging schemes, we reverse the "light
path" to infer the location of the scattering points. Because the
ray tracing model cannot account for the interactions between
scattering points within the scatterer, it leads to information loss.
Building a scattering model directly from Maxwell’s equations accu-
rately captures the multi-level scattering occurring inside the scatterer,
thereby providing additional information for radio frequency imaging
to enhance resolution.

In particular, as shown in Figure 1a, the ray tracing model is
equivalent to the RF signal as rays, treating each scattering subunit
as an independent target. The received signals are treated as their
linear superposition [4]. After acquiring the scatter signal, we re-
verse the "light path" to deduce the location of the scatter point.
In this case, we ignore the interaction within the scatterer. On the
contrary, the field model we established can more accurately reflect
the impact of scatterers on the RF signal.

We perform simulation calculations for the two models. The
result is shown in Figure 2. We set the sensing area as a square with
a side length of 2.5𝜆, which is shown in Figure 2a. Set up a "rabbit"
(yellow part in the figure) as a scatterer, surrounded by air (blue
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Figure 2: Simulation of radio frequency imaging. (a) The sens-
ing domain is 2.5 times the wavelength in both length and
width, with scatterers marked in yellow and blue represent-
ing air. (b) Since the ray tracing scheme does not consider the
interactionwithin the scatterer, when the size of the scatterer
is small, it is only possible to vaguely identify the presence of
scatterers in this area. (c) After several rounds of nonlinear
iterations using the field model, we obtain the shape of the
scatterer.
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Figure 3: It is easier to achieve good training results by first
using the backpropagation algorithm for data preprocess-
ing. (a) Schematic diagram of a scatterer. (b) Imaging results
when first using the backpropagation algorithm for data pre-
processing, and then using 20% of the training samples for
training. (c) Imaging results when directly using 20% of the
training samples for training. (d) Imaging results when di-
rectly using all training samples for training.

part). The relative complex permittivity of the scatterer is set to 2.
And 32 transmitting antennas and receiving antennas are placed at
equal intervals on a circle 4𝜆 away from the center of the scattering
area. Figure. 2b and 2c are image results reconstructed using ray
tracing model and field model, respectively. It can be found that
in the imaging results of the ray tracing model, only the presence
of scatterers in this area can be vaguely distinguished. But in the
imaging results of the field model, we can distinguish the basic shape
and position of the scatterers.

3 THE MAIN RESULTS
Using physical models for data preprocessing can help reduce the
amount of training required for network training [3]. Our evaluation
results show that this method can achieve better imaging results
by using only 20% of the data for training than directly training
deeplearning with the entire data. The results are shown in Figure 3.

We test LiquImager in a area of 25 cm × 25 cm, and the accuracy
rate of liquid identification is more than 93.11%. We use 4 different
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types of containers to hold liquids, and LiquImager still has a preci-
sion of more than 91% in identifying liquids. In addition, LiquImager
can accurately image containers arbitrarily placed in the field, and
distinguish the shape of the container with an accuracy of 100%.
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