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RFID technology has recently been exploited for not only identification but also fine-grained trajectory track-

ing and gesture recognition. While contact-based (a tag is attached to the target of interest) sensing has

achieved promising results, contactless sensing still faces severe challenges such as low accuracy and inabil-

ity to sense multiple targets simultaneously in proximity, restricting its applicability in real-world deployment.

In this work, we present Tamera, a contactless RFID-based sensing system, which significantly improves the

tracking accuracy, enables multi-commodity tracking, and even material and shopping behavior recognition.

We successfully address multiple technical challenges, and design and implement our prototype on commod-

ity RFID devices. We test the positioning accuracy of Tamera in a 5 m × 6 m laboratory. Tamera achieves

a median error of 1.3 cm and 2.7 cm for contactless single- and multi-commodity tracking, respectively. In

our laboratory, two shelves commonly found in the supermarket are arranged and the goods are placed on

them. Tamera successfully localizes and identifies the material type (metal, plastic, paper, and glass) of the

commodities on the shelf with an accuracy higher than 95%. Tamera successfully recognizes four shopping

behaviors (taking commodity, replacing commodity, buying commodity, and invoking commodity) with an

accuracy higher than 93%.
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1 INTRODUCTION

Wireless sensing has attracted considerable attention in the last decade. Among the wireless tech-
nologies [10, 11, 19] that are employed for sensing, RFID is particularly promising due to the
flexibility and cheap price of tags. The RFID reader is relatively expensive but one reader can
communicate with many tags so the cost is well amortized. We have witnessed widespread RFID-
based applications such as identification [3, 39], authentication [7, 12], tracking [8, 35, 40, 42], and
counting [5, 13, 38]. Recent breakthrough research in this area has further enabled new and novel
applications such as respiration sensing [28, 43], gesture recognition [25, 29], and even material
sensing [33, 38]. These applications demonstrate a great potential of applying RFID devices for
sensing besides the traditional identification usage.

In advanced tracking and localization application, RFID-based technologies have achieved
centimeter-level accuracy recently by leveraging the fine-grained phase readings of the reflected
signal. However, these high-accuracy approaches are contact based which means RFID tags need to
be attached to the target commodity. Although an RFID tag is relatively cheap (∼10 cents), attach-
ing one tag to each commodity still incurs a significant amount of cost when there are millions
of items such as in a huge supermarket or warehouse. Further, the labor cost of attaching and
removing the tag to/from the item is also non-negligible.

Previous researches have shown that the RFID tags attached to the target can be utilized for
target tracking. For example, Tagoram [40] utilizes moving tags to simulate the inverse Synthetic

Aperture Radar (SAR) antennas and pinpoints a tag at an accuracy of a few centimeters. RF-
IDraw [32] tracks a moving tag and deduces its trajectory in the air. RF-Echo [4] introduces a
custom-designed active ASIC tag and achieves decimeter accuracy in the long-range indoor non-

line-of-sight (NLOS) scenarios. But they all need to place an RFID tag on the target. In some
applications, it is not always feasible to attach a tag to the target as the tag may affect the operation
of a delicate mechanical/electronic device.

Inspired by these practical application requirements, in this work we focus on contactless sens-
ing with commodity RFID hardware. The key idea behind contactless tracking is to retrieve useful
information about the signal reflected on the target.

To enable fine-grained contactless sensing with RFID, multiple challenges need to be carefully
addressed. First, the signal is weak after two reflections. Thus, the variation of reflected RFID signal
induced by the commodity movement can be extremely small and easily buried in noise. Second,
the disturbance of the environment is time-varying. Taking the supermarket environment as one
example shown in Figure 1, customers walking around can interfere with the sensing. Further-
more, the environment in which the RFID tags and antennas are deployed is dynamically chang-
ing. Third, it is difficult to distinguish the target signal from the reflected signal of surrounding
items. Without attaching tags to the targets of interest, the received signals are reflected by these
commodities. This adds another layer of difficulty in differentiating these targets. In addition to
performing contactless tracking of multiple commodities, we further propose to sense the material
of the commodity.

To address the aforementioned challenges and extract subtle signal variation for sensing/
tracking, we differentiate the signals received at different stages (before, during, after the target
is picked up): employ the difference of these signals to remove the commonly shared strong
direct-path signal, background reflections, and hardware noise in the three stages. Inspired by
Tagoram [40], we further employ the hologram scheme to eliminate the effect of white noise. To
address the interference caused by people moving around in the supermarket application, we
combine information from multiple tags to distinguish the signal induced by target movement
from the interference signal. The key observation is that the interference caused by the movement
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Fig. 1. Supermarket scenario: Commodity tracking and understanding shopping behavior recognition.

of customers drastically depends on how far they are from the RFID tags. We observe that the
commodities on the shelf are much closer (tens of centimeters) to the tags attached on the back
of the shelf and thus the effect of the commodity movement on different tags can be dramatically
different because a 10–20 cm distance difference among tags matters. Notice that the interfering
customers are usually relatively far away (1–3 m) from the tags and thus the interference signal
tends to be similar at all the tags. Based on this observation, we can filter out the interference
caused by surrounding humans and track the targeted commodity. Since different commodity
packaging materials have different dielectric properties, even if different commodities are placed in
the same position, their effects on the RF signal are different. Therefore, when different commodi-
ties traverse the same track, the RF signals obtained are also different. Based on this difference,
we have completed the identification of the product material. In order to avoid the influence of
environmental noise, we choose to extract material features from the differential signal.

In this work, we carefully design Tamera, a contactless RFID-based multi-commodities tracking
system. The major contributions of our work are summarized as follows.

—In terms of tracking, we propose a contactless, centimeter-level multi-commodity tracking
solution. Taking advantage of the Gaussian nature of noise distribution, we propose an al-
gorithm to assign weights to different labels (in Section 4.1), which achieves simultaneous
tracking of multiple items with an average error of less than 3 cm. Furthermore, we combine
geometric relations and gradient descent algorithms to improve the real-time performance
of the system. Experimental results (in Section 7.2) show that the computation delays for
single and multi-objectives are 0.01 s and 0.08 s, respectively.

— In terms of material identification, based on the model analysis, we construct features re-
lated to the permittivity of materials (in Section 5.3). Furthermore, we propose an algorithm
to suppress human interference based on experimental observations (in Section 5.2). The ex-
perimental results (in Section 7.3) show that when there are three people in the environment,
the accuracy of material recognition still exceeds 75%.
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Fig. 2. System overview of Tamera.

—In terms of behavior identification, we build a lightweight classification model (in Section 6.2)
to complete user behavior recognition. Our extensive studies show that Tamera can success-
fully infer the shopping behaviors of different customers at an accuracy higher than 93%.

The rest of this article is organized as follows. In Section 2, we present the overall structure of
Tamera. In Section 3, we present our data preprocessing and calibration methods, and in Section 4
we present our contactless localization and tracking of multiple commodities simultaneously. We
then introduce material recognition in Section 5 and shopping behavior recognition in Section 6.
We present our extensive experiments to evaluate and validate our system in Section 7. We review
the related work in Section 8 followed by a summary in Section 9.

2 SYSTEM OVERVIEW

Figure 2 shows the system architecture of Tamera. It consists of five main modules: (1) data pre-
processing module, (2) localization module for static commodities, (3) tracking module for mobile
commodities, (4) material recognition module, and (5) shopping behavior recognition module.

In the remaining sections, we will present these three key components of Tamera in detail.
Due to the environmental thermal noise and hardware imperfect synchronization, careful data

preprocessing is required before we can achieve meaningful sensing. The processed data is passed
to the signal extraction sub-module to extract the signal reflected from the target commodity. After
that, we calibrate the signal by signal calibration sub-module to remove the random phase offset.
The RSSI readings are also calibrated using a fitting method. Finally, the processed data will be
used for accurate target tracking/localization, material recognition, and even shopping behavior
recognition.

The localization and tracking modules are used to locate the absolute position of static com-
modities and the movement trajectory of mobile commodities. The material identification mod-
ule is used to recognize the material type of the target when a commodity is moved by a cus-
tomer. Localizing/tracking the items and identifying the packaging material with high precision
are particularly important to infer which commodities are shopped by the customers. To enable
high-precision tracking and recognition, we design an effective method for detecting whether a
target item is moved by a customer. When it is moving, our system then triggers the tracking and
material recognition methods to compute its initial position, the moving trajectory, and the mate-
rial type of the item.

Finally, Tamera combines the material type, absolute position, and coarse-grained trajectory of
the target movement to infer the customer’s shopping behavior. In this work, we predefine four
different shopping behaviors for the demonstration. Our methods can be extended to recognize
more shopping patterns if their trajectories differ from each other to some extent.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 43. Publication date: February 2023.



Tamera 43:5

Fig. 3. Reflection model for RFID system.

3 DATA PREPROCESSING

3.1 Phase Data Preprocessing

Signal acquisition. Since we are using commercial RFID devices, we cannot obtain the original
I/Q signals. Instead, we can only obtain the data (tag id, amplitude, phase, timestamp, etc.) returned
by the reader according to the protocol. We convert RSSI into amplitude, and then combine the
phase data to construct a complex number as the signal value.

Smoothing. We notice that even if the tags and the antennas are static, the phase and RSSI data
will still fluctuate slightly in a short time. In addition to the small variation, the phase readings
occasionally suffer from phase ambiguity, which introduces a sudden phase increase or decrease
by π . For this significant phase change, we mitigate the π phase ambiguity from the readings. Then
we employ a moving average filter to smooth the phase and RSSI variation for further processing.

Interpolation. RFID readers can only communicate with one tag at a time, which means sam-
pling data for tracking is limited. On the other hand, we need to capture the data from multiple
tags at the same time in order to track multiple moving targets. We indeed interpolate the available
sampling data at the required time points. We choose the Piecewise Cubic Hermite Interpolat-

ing Polynomial (PCHIP) method which provides more accurate interpolation with fairly high
efficiency.

3.2 Accurate Signal Extraction

Raw Signal Extraction. Figure 3 shows the single tag signal propagation model with RFID to
illustrate how the target movement can be tracked with reflected signal variations. This concept
can be easily generalized to multiple tags.

Before the tag-free target enters into the tracking area, the received signal contains the back-
ground signal components, including the direct path signal (sd ) and other static reflection path
signals (ss ). We record the stationary signal at this time and the whole signal can be expressed as
senv = sd + ss . When the target enters the tracking area, the signals reflected from the target X
(sX ) will also be received. And the signal received at the RFID reader can be expressed as sr [20]:

sr = sd + ss + sX . (1)

To extract the target reflection signal, we subtract the signal when the target is not present from
sr in Equation (1):

sX = sr − (ss + sd ) = sA→X→T→A, (2)

where sA→X→T→A denotes the signal through a path from the antennaA to the commodityX , then
to the tag T , and finally received at A.
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Propagation Signal Extraction. The channel parameter is denoted by h = αe−jθ , where α and
θ represent the channel attenuation and phase shifting, respectively. In a commodity RFID system,
we can obtain α and θ from the RSSI and phase readings.

We get the target-reflected signal SX which can be further expressed as

SX = sAhXhAHA→X→T→A. ∗ HT , (3)

where .∗ indicates that the matrix is multiplied by element, and sA represents the original signal
from the antenna. HA→X→T→A = [hA→X→T1→A, . . . ,hA→X→Tn→A] represents the signal change
due to signal propagation in the air, andTi is the i-th Tag. And the channel parameters hX and hA

represent the signal change caused by the target surface and reader antenna, respectively. HT =

[hT 1,hT 2, . . . ,hT n] is the influence of the tag array on the signal, and the subscript i corresponds
to the i-th tag. And we name the phase shifting caused by these parameters as device-dependent
phase shifting, which prevents us from obtaining location information of commodities.

Eliminating Device-Dependent Phase Shifting. To eliminate the device-dependent phase
shifting, we apply a reference point model. Specifically, we place a target X0 at a randomly se-
lected location which is called a reference point in the tracking space and measure the reflected
signal following procedures presented in Section 3.2. Since we already know the location of the ref-
erence point, the propagation parameter hA→X→Ti→A can be calculated according to the following
formula [24, 37]:

hA→X0→Ti→A = cA→X0→T→A · e−jθA→X0→Ti→A ,

θA→X0→Ti→A = 2π ·
rA→X0→Ti→A

λ
mod 2π ,

(4)

where cA→X0→Ti→A is the path loss factor along pathA→ X0 → Ti → A. The sum of the Euclidean
distance of path A→ X0 → Ti → A is rA→X0→Ti→A. The phase change due to signal propagation
through path A→ X0 → Ti → A is θA→X0→Ti→A. Let hX0 denote the phase shift of target X0, then

the total device-dependent parameter sAhX0ḣAḢT can be calculated by SX ./HA→X0→T→A, where
./ is divided by the element. By eliminating the device-dependent phase shift calculated in the
reference point, for any position in the measurement area, the channel parameters that are only
related to the position of the commodity can be obtained by SX ./(sAhX · hA · HT ), and we name
the phase of the channel parameter measurement as Θm = [θm1, . . . ,θmn].

4 LOCALIZING AND TRACKING

We first present our scheme for contactless tracking commodities at high accuracy with COTS
RFID devices. Due to the weak intensity of the RFID reflected signal, our measurement area is a
square area of 1.6 m × 1.6 m surrounded by two tag arrays, each consisting of seven independent
tags.1

4.1 Locate Static Commodities

Basic Model. Considering a commodity X , Equation (4) indicates the phase when the signal is
reflected by the commodity. The sum of the distances from antenna A to commodity X and then
to the i-th tag Ti is rA→X→Ti

. For one tag, the possible locations of the commodity X are on an
ellipse [21] whose two focus points are the locations of antennaA and tagT as shown in Figure 4(a).
For another tag, the possible locations of the commodity are on another ellipse. The intersection
of ellipses produced based on info from different RFID tags is used to localize the target.

1We use seven tags to form a tag array because if the number is too small, such as three to four, it would be difficult to

efficiently get sufficient data for processing; while if the number is far greater than 7, say 15–20, it would suffer from the

heavy contention.
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Fig. 4. Basic tracking model with Gaussian enhancement and prediction direction.

Unfortunately, in reality, it is non-trivial to obtain the position of the target by identifying the
intersection of the two ellipses. First, for a phase ϕ we calculate, there are multiple ellipses which
satisfy the phase constraint ϕ + k ∗ 2π with k ∈ {0, 1, 2, . . .} being a non-negative integer. The
second reason is that the intersection point of each tag pair may slightly deviate from the true
position due to noise and errors, which causes the intersection points of multiple tag pairs not to
coincide. If we solve multiple elliptic equations for the target’s location, not only is the computa-
tional complexity high, but we also may not get the optimal solution.

Phase Differentiation. We thus divide the monitoring area into small grids with a side length
of 0.1 cm (larger grids will bring more error and smaller grids will bring greater computing over-
head). Every possible grid of the target is traversed to calculate the likelihood that the target
appears.

When the target appears in the measurement area, we calculate the measurement phase Θm of
the propagation parameter by the method in Section 3.2 continuously. On the other hand, for each
grid, if the target appears here, the reflected propagation distance is measurable, which can be
expressed as RA→X→T→A = [rA→X→T1→A, . . . , rA→X→Tn→A]. The estimated phase can be given by

Θe =
2π

λ
(RA→X→T→A), (5)

where λ is the wavelength. For each tag, if the measured phase θmi is closer to the estimated
phase θei , we will regard that the target lies in this grid with high probability.

Multi-Tag Fusion. Since we have n deployed tags, after obtaining the measured phase θmi and
the estimated phase θei for the i-th tag, we can now calculate the probability for each grid by
taking into consideration all the tags according to the following equation:

v =
������

n∑
i=1

‖wi ‖ e j (θmi−θei )
������ . (6)

For each tag, the difference between the measured phase value and the estimated phase value is
treated as the phase of a constructed signal. And the amplitude ‖wi ‖ from each tag is equal to 1
since each grid has the same weight. If the K th grid is the true position of the target, the measured
phase Θm will match the estimated phase at this grid well enough. Thus, a small phase difference
causes the probability value v here to be combined constructively. Figure 4(b) shows the result of
multi-tag fusion, and the color of the pixel at the estimated position is significantly darker than
other areas.

Gaussian Enhancement. Due to the existence of additive white Gaussian noise, θmi is a Gauss-
ian distribution random variable while θei is constant, so θmi −θei ∼ T (0, δ 2). Thus, the probability
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value of a grid from a tag can be calculated by

‖wi ‖ = f ( |θmi − θei |; 0,δ 2), (7)

f (x ) =
1√

(2π )δ
exp

(
− (x − μ )2

2δ 2

)
, (8)

where f (x ; 0,δ 2) is the probability density function of a Gaussian distributionN (0,δ 2). The stan-
dard deviation δ is determined by the thermal noise and independent of the distance. In our ex-
perimental settings, when we set the value of δ as 0.4, it could be optimal comparing with other
values, which is determined according to the experimental results in at least 500 rounds.

Figure 4(c) depicts the result when incorporating the aforementioned Gaussian enhancement
method into our model. We can clearly see that our model greatly reduces the estimated region
with higher probability, which could significantly reduce the searching overhead and improve the
tracking accuracy as well.

Event Detection. When the location of the commodities is changed, the collected signal at the
antenna will be changed. Compared to the signal amplitude, the signal phase is more sensitive
to such environmental change. After smoothing the phase curve, we apply a sliding window to
continuously detect whether the commodity location has been changed. The variance of the phase
value in the sliding window reflects the degree of phase fluctuation. When the variance exceeds
our preset threshold, we think that the commodity’s location is being changed. When the variance
drops below the threshold again, we regard the commodity has been changed and recalculate
the position of the commodity. Specifically, we use a double sliding window for event detection,
which is similar to WiFi’s packet inspection mechanism [27]. First, we compute the signal variances
within two adjacent time windows A and B of equal length, which are an and bn . Then we set a
threshold Th to judge whether the ratio mn of an and bn has jumped. In the specific setting, the
threshold is set to 10.

Search Space Optimization. In order to determine the location of the commodity X , for all
grids in the area, we calculate the probability of the commodity at that grid one by one. However,
such a global search method is likely to cause a lot of computational overhead, especially when the
search area is large or the side length of the grid is small. As shown in Figure 4(a), the commodity
X is on an ellipse with antenna A and tag T as the focus points in theory. This provides us with
an opportunity to optimize the search space. Under ideal circumstances, the commodity X should
satisfy the following equation:√

(x − XA)2 + (y − YA)2 +

√
(x − XT )2 + (y − YT )2

= RA→X→T→A −
√

(XA − XT )2 + (YA − YT )2,

(9)

where (x ,y) is the coordinates of the commodity X , {(XA,YA) |(xa1,ya1), . . . , (xan ,yan )} is the set
of antenna coordinates, and {(XT ,YT ) |(xt1,yt1), . . . , (xtm ,ytm )} is the set of tag coordinates. On
the left side of the equal sign is an equation about x and y, We let

д(x ,y) =
√

(x − XA)2 + (y − YA)2

+

√
(x − XT )2 + (y − YT )2 +

√
(XA − XT )2 + (YA − YT )2.

(10)

Combining Equations (5), (9) can be written as follows:

д(x ,y) =

(
k +

θx

2π

)
λ, (11)

where θx is the measured phase, k is a non-negative integer, and λ is wavelength.
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Fig. 5. Search space optimization.

However, due to multi-path interference and other reasons, there may not be a point where all el-
lipses pass. Therefore, when determining the search space, we do not strictly require that the points
in the area appear on all ellipses, but require that the distance from them to each ellipse does not
exceed a threshold. As shown in Figure 5(a), the area covered by gray is very close to each ellipse,
and we select these areas as the search space. We modify Equation (11) to the following form:

�����
д(x ,y)

λ
−
⌊
д(x ,y)

λ

⌋
− θx

2π

����� < θd , (12)

where �x� represents the largest integer not greater than x and θd is the threshold. According
to Equation (12), we optimize the search space. If we simply use the traversal algorithm, the
complexity of the algorithm is O (N × M ), where N and M are the horizontal and vertical grid
points in the area. By optimizing the search space, the complexity of the algorithm can be reduced
to O ( N×M

k
), where k is a constant related to θd . The probability distribution after optimization of

the search space is shown in Figure 5(b). Since most areas are not searched, the probability value
of these places maintains the initial value of 0.

4.2 Tracking Mobile Commodities

In this section, we further explore the tracking of the mobile target. The difficulty in tracking the
mobile target is that COTS RFID hardware has a low sampling rate. When the target moves, the
data samples collected at a target location become insufficient for accurate localization. To address
this issue, the gradient descent method is used to estimate the position of the target at the next
moment which can make the most of every sample. We present the details below. We first discuss
the movement of a single commodity in the area.

4.2.1 Single Commodity Tracking. Problem Conversion. According to Equation (6), our goal
is to find the grid with the largest v . However, in addition to the insufficient sampling rate, the
method of dividing the area into grids needs to traverse the entire tracking area, which is time-
consuming and cannot meet the requirement of real-time performance. The size of the grid also
affects the positioning accuracy. Thus, considering the continuity of space, we translate the prob-
lem into an optimization problem of identifying the value of (x ,y) to make the v value the largest.
However, Figure 4(b) shows the value of the function over the entire tracking area from which we
can see that the function is non-convex in the definition domain.

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 43. Publication date: February 2023.
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The difficulty of the non-convex optimization problem is that the local optimum point is not the
global optimum point. Fortunately, we can solve the problem by utilizing the continuity property
of target movement. In a short period of time (<0.1 s), the target usually does not move more than
a half wavelength (<16 cm) of distance. Therefore, if we know the current position of the target,
as long as the sampling interval is small, the local optimum can be considered as the true position
of the target [2].

Mini-Batch Gradient Descent. Tamera employs the gradient descent method to find the op-
timal solution. However, not all the sample values can be used to calculate the gradient, because
these samples are collected at different locations when the target is moving. We need to select
samples collected at close-by target locations and make the algorithm converge faster than the
target location change.

Because of the spatial continuity of target movement, adjacent samples in the time domain cor-
respond to close-by target locations. On the other hand, the Mini-batch Gradient Descent method
requires adjacent samples to be from random tags to ensure faster convergence. Fortunately, the
RFID system adopts a random back-off mechanism and this inherent property guarantees the ad-
jacent samples are exactly from random tags. Thus, we can directly use the data samples collected
without the need of designing a sample selection algorithm.

Function Simplification. When determining the initial position of the commodity, the opti-
mization function is the commodity of the probability distribution function and the complex ex-
ponential function. However, both of them are difficult to solve. We simplify the function in the
moving target tracking module:

v ′ =
n∑

i=1

cos (θmi − θei ), (13)

wheren is the number of sample points for each iteration.θm is the measured phase of the reflection
signal, and θe is the estimated phase at the latest position (x ,y):

θei =
2π

λ
·
(√

(x − xT i )2 + (y − yT i )2

+

√
(x − xA)2 + (y − yA)2

)
,

(14)

where (xT i ,yT i ) and (xA,yA) denote the positions of the i-th tag and antenna, respectively. Then
we calculate the partial derivatives of x and y, respectively:

∂v ′

∂x
=

n∑
i

2π

λ
· sin (θei − θmi ) ·

(
x − xA

disA
+
x − xT i

disT i

)
,

∂v ′

∂y
=

n∑
i

2π

λ
· sin (θei − θmi ) ·

(
y − yA

disA
+
y − yT i

disT i

)
,

(15)

where disA and disT i represent the distance from the target to the antenna and to the i-th tag,
respectively. The sample values are fused to calculate the gradient, where the initial step size is set
to 1 mm by default, which is the length of the coordinate changes after each update of the gradient.
When the difference in the value of the function is less than a predefined threshold, we consider
the localization algorithm has converged and then record the position of the target. If there is no
convergence after a predefined period of time, we dynamically adjust the step size and the number
of samples used in each iteration to increase the convergence speed.
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4.2.2 Multiple Commodities Tracking. The difficulty in simultaneous positioning of multiple
commodities is that the signals reflected from different targets are superimposed at the reader.
RFID hardware usually has a small frequency bandwidth and the sampling rate is low. Thus, it is
extremely difficult to separate the superimposed signals to track each individual target. We thus
tackle this issue from another direction without requiring one to separate the mixed signals. The
basic idea is that when there are l targets in the measurement area, the received superimposed
signal can be calculated by the following formula:

S =

l∑
i=1

CΠi · e−j 2π

λ
RΠ i , (16)

where matrix S of size n ×m represents the superimposed reflected signal of l commodities at n
antennas when receiving the signals of m tags. The signal propagation path for antennas and the
i-th tag is Πi . The path loss factor of paths Πi when the signal propagates in the air is CΠi , which
is usually inversely proportional to distance. And, RΠi is the distance of paths Πi .

It’s nontrivial to solve the aforementioned equations, since the inaccurate path-loss model as
well as the measurement noise on RFID readers and tags. These errors make the results really far
away from the ground truth, and sometimes there is even no feasible solution for this problem.

In dealing with the aforementioned challenges, we devise a virtual superimposition scheme,
where l virtual nodes are selected to test the feasibility of the solution. Without loss of generality,
we consider a two target scenario as one example. We traverse each pair of grids in the measure-
ment area. For each pair of grids, we estimate the phase of their reflected signal. And then we can
obtain the superimposed signal according to Equation (16).

Although the estimated phase for each grid can be calculated in advance, when the number
of targets is more, there are more candidate grids to traverse and the computational complexity
increases exponentially with the increased number of grids.

5 MATERIAL RECOGNITION

Many systems involve material analysis of commodities. However, these systems [33] are mostly
limited to stationary commodities and require a specific container. In this section, we propose a
method capable of material sensing even when the target is moving. More specifically, we employ
the phase change caused by different materials when the commodity moves to identify the material
type of the target.

5.1 Rationale of Material Recognition

Reflection Model. Figure 6(a) shows the basic principle of our material identification method. Dif-
ferent materials such as metal and plastic have different reflection intensities for wireless signals.
The red line represents all stationary signals including the direct path signal (sd ) of the RFID tag
and the static signal (ss ) reflected by the surrounding stationary commodities. The signal reflected
by the targetX (sX ) is represented as a circle in the phase domain due to the movement.2 The phase
values are indicated by green and black lines for reflections on different materials. The three kinds
of signals are mixed at the RFID receiver. When the target starts moving, the propagation distance
of the reflected signal of the commodity has changed. The phase of the reflected signal sX shifts
with the distance.

The right part subfigures show the phase changes of the combined signals at the antenna. During
this process, if the metal and plastic targets are moving in the same trajectory, due to the stronger

2The movement leads to the phase variation with time. Since the values are in the range of [0, 2π ], in phase domain, it

could be drawn as a circle.
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Fig. 6. Material recognition model.

reflectivity, the reflected signal from the metal surface, the phase change of the combined signal
is significantly larger.

5.2 Movement Detection

Before we recognize the material of the moving targets, the change of signal caused by the target
should be marked precisely. However, the frequency of moving targets, as well as walking, swing-
ing, and other daily actions are all between 5 and 20 Hz and the sampling rate of a single tag of
RFID is lower than 30 Hz, which makes it difficult to separate the target moving signal and sur-
rounding noise in the frequency domain. In the time domain, different people take commodities
at different speeds which results in different fluctuations and some gentle fluctuations are similar
to ambient noise.

We detect the target movement based on the following observations. Relative to the difference in
the position of different tags, the size of the person is so large that human interference has a similar
effect on multiple tags. However, for the moving commodity, the relative position with different
tags is significantly different so that the change of its position has a much larger effect on one or
two tags. We calculate the moving variance of the RFID phase when the experimenter takes the
target. The average moving variance of all tags is subtracted from the value of each tag. And then
only one or two tags show significant peaks on the moving variance when the action of moving
the item occurs as shown in Figure 6(b). We can thus employ this observation to differentiate
interference and target-caused signal variations.

5.3 Feature Extraction

As mentioned earlier in Equation (1), the received signal contains the direct path signal (sd ), static
reflection path signal (ss ), and the signals reflected from the target X (sX ). Due to the dynamic
changes of the environment, the static portion of the RFID signal ss often changes unexpectedly,
which will also affect the degree of fluctuation of the combined signal phase. As Figure 6(c) shows,
the phase value fluctuation will change with the length of the red line, i.e., the combined amplitude
of the direct signal and static signal.

We use a geometric model to calculate the amplitude of the target reflection signal from the
commodity without knowing sd and ss . Assuming that a target moves slightly within half of
the signal wavelength (i.e., about 16 cm), the phase shifting of the reflected signal would form a
circle in the IQ coordinate system, as the green dotted line shows in Figure 6(c). When the phase
of the received signal reaches the peak and valley value, we can think of the signal as the tangent
to the circle as shown by the black lines. The magnitude of the difference (Δα ) between the two
signals can be regarded as a chord of the circle. And the phase of the difference (Δϕ) between the
two signals can be regarded as the complementary angle of the central angle corresponding to the
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Fig. 7. Material recognition when commodities are moving in different directions, using different materials.

chord. These two values can now be used to determine the reflection amplitude feature (FAF) of
the target according to f = Δα

π−Δϕ
. We use the reflection intensity as a feature of material

identification.

5.4 Classification

Basic Observation. We first validate our model with benchmark experiments. As shown in
Figure 7(a), we use the track slider to move the commodity, and the track slider is placed at
different orientations to demonstrate the effectiveness of the model. Figure 7(b) shows the
extraction results of the four materials including metal, plastic, glass, and paper. There are clear
differences in the reflected signals of different materials.

Multi-Tag Fusion. One may wonder, is this feature reasonable when commodities in different
materials are moving at different distances? If a commodity with stronger reflectivity is moving at
a farther distance in comparison with the one in material with weaker reflectivity, how does one
discriminate these two commodities? In fact, for the feature of a single tag, as shown in Figure 7(b),
there are indeed some overlaps between different materials because of the offset of the relative
position of the target with respect to the antenna and tag. Therefore, we employ multiple tags and
fuse the information from multiple tags to address the issues mentioned above. Figure 7(c) shows
the result of the feature fusion of two tags. And the different materials can be artificially separated.
In fact, in order to prevent the impact of signal errors or large position offset, we used more than
seven tags and each tag is separated by 15 cm.

Based on the features extracted from tags, we try to classify different materials using the follow-
ing three classifiers: Decision Tree, KNN (K-Nearest Neighbor), and SVM (Support Vector Machine
with different kernels). For our dataset, the performance of these three classifiers is presented in
Table 1. Based on accuracy and time cost, the decision tree is selected as the classifier for mate-
rial identification. We set the split criterion to Gini’s diversity index. And the number of leaves is
limited to 20 to prevent overfitting.

6 BEHAVIOR RECOGNITION

In this section, we will introduce how Tamera recognizes customers’ shopping behavior in a typ-
ical supermarket environment. Since we already obtained the tracking and material information
as presented in the above sections, a straightforward method is to leverage the obtained trajectory
information directly for behavior recognition. However, with this trajectory-based method it is
often hard to achieve the expected performance due to the following reasons.

— First, due to the complicated placement of commodities on the shelves, estimate the true
location of each commodity is a time-consuming task.
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Table 1. Performance of Different Classifiers in Material Recognition

Classifier Accuracy Training Cost Prediction Cost

KNN 84.6% N/A 1.66 ms

SVM (Gaussian Kernel) 88.3% 2.07 s 5.4 ms

SVM (Linear Kernel) 78.3% 2.07 s 5.2 ms

SVM (Polynomial Kernel) 84.7% 2.02 s 5.5 ms

Decision Tree 96% 0.59 s 1.46 ms

—Second, the limited shelf space limits the number of deployed tags, which results in limited
location performance.

— Third, when a customer takes the commodity, the trajectory is a complex 3D movement
rather than a simple 2D movement, which makes it very difficult to judge customers’ shop-
ping behavior through trajectories, moreover, customers’ different shopping habits, such as
speed, distance, and other factors, also make this problem worse.

Next, we will describe how Tamera overcomes these challenges and achieves a high identification
accuracy for customers’ behavior.

6.1 Target Commodity Positioning

To recognize a customer’s shopping behavior, Tamera first needs to know which commodity the
customer has picked up. Therefore, the initial position of the picked commodity should be known
in advance. An intuitive way is to use the method mentioned in Section 4.1 to directly locate the
picked commodity. However, due to the rich multi-path effect caused by narrow shelf space and
complicated commodity placement, it is a very difficult and time-consuming task to obtain the
real position of the picked commodity. To this end, Tamera applies position recognition instead
of estimate real location to reduce the time overhead.

The key observation behind the position recognition scheme is that the closer the commodity
is to the tag, the greater the impact on the tag signal. Therefore, the movement of the commodity
will obviously change the phase feature of the tag signal. Specifically, Tamera divides each shelf
layer into several even zones. As shown in Figure 8(d), seven tags are linearly arranged behind
the commodity to form a tag array. When a customer takes a commodity, Tamera collects the
phase change caused by the commodity movement and calculates the difference between the peak
value and valley value as the location feature. The position recognition result can be obtained by
feeding such features into a KNN classifier. Note that the length of the shelf is 115 cm and the
average size of the commodity (e.g., paper cup in this scenario) is usually 9 cm. For that reason,
Tamera divides the shelf layer into �115/9� = 12 zones, which is dense enough for commodity
position recognition.

6.2 Customer Behavior Recognition

After identifying the picked commodity, Tamera can begin to recognize the customer’s shopping
behavior. An intuitive idea is to track the commodity’s movement directly as we mentioned in
Section 4, and then recognize customer’s behavior. However, such method suffers high computa-
tional overhead and processing delay, which makes it infeasible. Fortunately, Tamera does not
need to accurately track a customer’s entire trajectory to identify their shopping behavior; in prac-
tice, it only needs to identify several basic shopping actions; Tamera can recognize most of the
customer’s shopping behaviors. In this article, Tamera predefines four basic shopping actions:
(PickUp) pick the commodity up from the shelf; (PutDown) put the commodity down to the shelf;
(PutIn) put the commodity in the cart; and (PutOut) remove the commodity from the cart. By com-
bining these basic actions, Tamera can recognize the customer’s shopping behavior. For example,
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Fig. 8. Experiment environment and typical setup for evaluations.

if Tamera detects action PickUp and action PutDown that occur continuously, then it can be judged
that this customer just picked up and checked the commodity, but has no intention to buy.

For each action, Tamera recognizes it by identifying its phase feature. Specifically, Tamera con-
tinuously records tag signals. When a commodity movement is detected, based on the recognition
result of the initial position of this commodity, Tamera will subtract the corresponding relatively
stationary signal from the received signal to eliminate multi-path in the environment and use the
phase value of the resulted signal as the feature for action recognition. The whole phase values are
re-divided into 80 discrete points by the interpolation method to remove the Doppler effect caused
by taking the commodity.

However, we noticed that different users have different habits, so when they do the same action,
the signal phase will be very different. Specifically, the time and duration of the peaks and troughs
of each phase signal will be different due to the speed at which the user completes the action. This
difference makes it difficult for classifiers such as KNN to achieve the required performance.

Therefore, before classifying the signal, we first use the dynamic time warping (DTW) [16]
algorithm to standardize the data, so that the phase characteristic curves of the same action have
a higher similarity. We test the effectiveness of the DTW algorithm on three classifiers, including
KNN, SVM, and Decision tree. The results of the test are shown in Table 2. We find that after using
the DTW algorithm to standardize the data, the accuracy of using KNN for behavior recognition
reached 93.2%, and it only took 0.19 ms to classify each action. Therefore, we choose KNN as the
classifier for behavior recognition.
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Table 2. Performance of Different Classifiers in Behavior Recognition

Classifier Accuracy without DTW Accuracy with DTW Prediction Cost

KNN 65.4% 93.2% 0.19 ms
SVM 59.3% 82.6% 1.14 ms

Decision Tree 51.1% 73.2% 0.26 ms

7 EVALUATION

In this section, we evaluate Tamera from aspects on tracking accuracy, material recognition, and
behavior recognition. We first introduce the basic experiment settings. Then, different materials
combining with the human interference are fully evaluated across different settings. Moreover,
supermarket environments are fully respected, where user behaviors are evaluated with fairly
complicated settings for multiple racks and multiple walking persons nearby.

7.1 Experiment Setup

We build a prototype of our system with commodity ImpinJ Speedway R420 reader and Alien EPC
Gen2 UHF tags. The reader supports up to four antennas and is compatible with the EPC Gen2
standard. The RFID system operates in the 920–926 MHz band. The size of the antenna is 260 mm
× 260 mm × 40 mm. The reader is connected to the server through an Ethernet cable. We adopt the
timestamp function provided by the reader instead of the absolute timing information to eliminate
the influence of network latency. We attach the tags on the acrylic board for the convenience of
deployment as shown in Figure 8. The tags are evenly attached to the board. The dimension of the
board is 100 cm × 40 cm. Adjacent tags are separated by 15 cm.

Due to the inherent anti-collision mechanism adopted by the commodity RFID reader, when
the reader queries multiple tags, a counter mechanism is adopted to prevent the tag from replying
very quickly [13]. This mechanism greatly affects the reader sampling (reading) rate. But if the
counter parameter is set too low, collision will happen frequently so that the continuity of the
experimental data will be destroyed and the sampling rate will be reduced. We thus modify
the counter parameter to optimize the time the tag waits and successfully increase the sampling
rate to about 40 Hz for one tag array with 14 tags. We use Ethernet cables to transfer RFID reader
data to a computer with Intel(R) Core i5-8500 at 2.8 GHz and 8 G memory. Using the TCP protocol,
the data obtained by the RFID reader is transmitted to the computer, and the data processing is
completed in MATLAB 2018a to determine the target’s position and movement trajectory.

Tracking Environment. The tracking experiments are conducted in the lab environment with
a size of 5 m × 6 m. Each of the two antennas is placed 70 cm away from the acrylic board. Since
any trajectory can be decomposed into linear and arc-shaped trajectories, we mainly focus on
these two basic trajectories. As shown in Figure 8(a), we place the target on an electric track with
a length of 135.2 cm. For arc-shaped trajectory, we place a toy train running in an arc-shaped orbit
as shown in Figure 8(b). The track consists of two linear parts with a length of 30 cm and two half
circles with a diameter of 22 cm. We employ a camera to record the movements as ground-truths.
The above toy track is also reassembled into various irregular shapes in the experiment.

Recognition Environment. To evaluate the shopping behavior recognition, we conduct
comprehensive experiments with the supermarket shopping cart and shelves as shown in
Figure 8(c). One tag array with less than 14 tags is deployed at the back of the shelf. The antennas
of the reader are located 50 cm away from the tag array. The antennas and tag arrays are required
to remain stationary, and commodities are placed densely on the shelves. A total of six people
with two females and four males are involved in the experiment. We collect data when the
volunteers perform shopping behaviors in their own manner. For material identification, we use
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Fig. 9. Localization accuracy in different

module.
Fig. 10. The effect of search space optimization.

paper, metal, glass, and plastic materials to train our model. The shopping behaviors we evaluated
include (1) taking a commodity from the shelf, (2) putting back the target to the shelf, (3) putting
a commodity in the cart, and (4) taking the target out of the cart and putting it back to the
shelf.

7.2 Tracking Accuracy

Static Commodities. We test the positioning accuracy in two scenarios: (1) add a new commodity
to the positioning area, and then determine the location of the new commodity; and (2) move
a commodity in the area to determine the position of the commodity after it has been moved.
However, during daily use, there are often multiple commodities on the desktop. Therefore, we
measure the position of multiple commodities one by one. The positioning accuracy is as shown
in Figure 9. For the first scenario, the average of positioning error is within 3 cm. As the number
of commodities increases, a small number of data are positioned incorrectly, resulting in some
abnormal points, so the average error will increase from 1 cm to 3 cm. However, in the second
scenario, environmental signals need to be synthesized artificially from the reflected signals of
other commodities in the measuring area which will cause some deviation.

Search Space Optimization. When locating the target, if we traverse each grid in the area with-
out restriction, it will bring greater computational overhead. Therefore, we constrain the search
space based on the geometric relationship. Figure 10 shows the impact of the selection of the thresh-
old on the search space percentage and distance difference when optimizing the search space. The
threshold varies from zero to one, which corresponds to the restriction from strict to loose. When
the threshold is zero, the search space contains only the intersection of several ellipses; when the
threshold is one, the search space contains all grids in the area. Search space percentage indicates
the ratio of the number of grids in the search space to the number of all grids in the area. The
distance difference represents the distance between the points obtained by positioning before and
after the search space optimization. It can be seen from the figure that when the restriction con-
ditions are strict, the distance difference is relatively large. This is because the measurement error
makes the intersection of the ellipses not accurately correspond to the position of the commodity.
When the threshold is greater than 0.33, the distance difference is already 0 cm, and the search
space at this time only accounts for 18.3% of the total number of grids. Even under the loose re-
quirement that the maximum distance difference does not exceed 5 cm, the size of the search space
can be optimized to 0.7% of the number of all grids.

Mobile Commodities. Figure 11 shows the comparison between the trajectory generated by
Tamera and the actual trajectory when the target moves in a linear trajectory, a circular trajectory,
and an irregular shapeed trajectory. We also show the tracking results when two commodities
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Fig. 11. Tracking results when the tag-free commodities moving in different types of trajectories. The red

line is the true trajectory of the target’s movement, and the black point is the trajectory obtained by Tamera

during the movement of the target.

Fig. 12. Impact of different moving speeds, distances to tags, and different commodity materials.

move simultaneously. As shown in Figure 11, the ground-truth is represented in red, and the black
dots represent the location of the real-time tracking. According to Figure 11(a), (b), and (c), the
estimated trajectories are consistent with the ground-truth. Moreover, as shown in Figure 11(d),
Tamera achieves good tracking performance even for two concurrent moving commodities.

For the linear track, Tamera achieves a mean error of 0.74 cm, 0.98 cm, and 1.31 cm in the x-
axis,y-axis, and x-y two-dimensional space, outperforming Tadar [42] and D-Watch [34] by around
10× and 3×, respectively. For the circular track, Tamera achieves a mean error of 0.6 cm, 0.92 cm,
and 1.27 cm in the x-axis, y-axis, and x-y two-dimensional space. We arrange two sliders in the
monitoring area and use blacktooth to control the motion of the two targets. We calculate the
error of the two targets separately and average them as the mean error. Compared to single target
tracking, multi-target tracking is much more challenging. Tamera can still achieve a mean error
of 2.71 cm when two targets move simultaneously.

Impact of Target Moving Speed. The target’s moving speed affects the tracking performance.
We conduct five sets of experiments by setting the target’s movement speed3 as 2 cm/s, 4 cm/s,
6 cm/s, 8 cm/s, and 10 cm/s with the help of a sliding track. As shown in Figure 12(a), as the speed
increases, due to the low sampling rate of RFID, the data used for smooth calibration is reduced
so that the tracking accuracy is slightly reduced. Moreover, the variance of the data also increases
with speed. Even if the speed reaches 10 cm/s, the average error of DTW distance is within 1.4 cm.
However, we do believe that when the speed is increased to meter level per second, the induced
Doppler shift will greatly affect the tracking accuracy. In a high-speed scenario, to achieve high
tracking accuracy, the speed effect does need to be carefully addressed and this is one important
direction of our future work.

3Note that the maximum achievable speed with this sliding track is 10 cm/s.
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Fig. 13. Material recognition accuracy: Its position accuracy, and under different moving trajectories.

Impact of Distance. Due to the contactless nature of our system which relies on the weak
reflected signal for tracking, when the target is far away from the tags, the signal may become too
weak to be utilized for tracking. We conduct experiments to evaluate the effect of distance between
the tag array and the target. It is shown in Figure 12(b) that overall the error increases with a larger
distance. However, even when the target is 1 m away from the tag array, the median error is still
within 5 cm. To achieve high tracking accuracy, we suggest to keep the distance between the tag
array and the target smaller than 60 cm.

Impact of Material. Target material directly affects the reflected signal, resulting in perfor-
mance variations. We evaluate the system performance with three different materials, i.e., metal,
plastic, and paper. Due to the stronger reflection from metal commodities, as shown in Figure 12(b),
we observe that both the tracking accuracy and tracking distance of the metal targets are higher
than that of plastic and paper targets.

Real-Time Performance. The end-to-end latency is composed of time spent on the following
parts: data preprocessing, signal calibration, and augmented hologram processing. The RFID reader
spends 0.2 s to collect the data samples. We employ a Lenovo desktop computer, which is equipped
with Intel(R) Core i5-8500 at 2.8 GHz and 8 G memory. We conduct 500 rounds of experiments and
the average computer processing time is 0.01 s and 0.08 s for single-target and two-target tracking,
respectively. The end-to-end latency is well below 1 s even for a two-target tracking scenario.

7.3 Material Recognition

We evaluate the performance of the material recognition module in both the slide rail scene and
supermarket scenario, and fully explore the impact of the number of tags, the number of positions,
and the human interference.

Slide Rail Scenario. In the slide rail scene, metal, plastic, paper, and glass boxes are placed
on the slider of the rails as shown in Figure 8(a) in turn. Only one tag array with seven tags and
one antenna are used to record RFID signals when the slider moves. The box for each material is
moved 50 times, 20 of which are used as test data. The results of the test are shown in Figure 13(b),
with an average accuracy of more than 96%.

Supermarket Scenario. In the store scene, commodities with different materials are placed
on the shelf as shown in Figure 8(c). One tag array with less than 14 tags is placed behind the
commodities, and one RFID directional antenna behind the tag array reads the RFID signal. The
data is collected once when the experimenter takes an item from the shelf. When the same shape
of the glass bottle and the plastic bottled mineral water are used as the recognition target, the
system can still accurately recognize the material of the package.

Number of Tags. In our recognition system, each antenna tag pair can extract a feature, and a
small number of tags cannot obtain enough features to help identify. If the number of tags is too
large, the sampling rate will be reduced, which will affect the accuracy of the feature. For a single
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Fig. 14. Impact of various factors on material recognition, mainly human interference and number of tags.

shelf, we need to find an appropriate number of tags, in keeping low interference and maintaining
a relatively high sampling rate for accuracy concern. And we evaluate the performance of the
material identification module with 4, 6, 8 and 10 tags, respectively. As shown in Figure 14(b),
when the number of tags reaches 6, the accuracy of material recognition can be stabilized at over
93%.

Number of Positions. We further study whether different number of positions of the commodi-
ties affects the accuracy of material recognition. The feature of different positions of the target will
form different clusters. If the number of locations increases, a large number of clusters may affect
the accuracy of the classification. The commodities are placed in 6 to 12 given positions and we
need to evaluate the accuracy when users are taking goods from these candidate positions.

As depicted in Figure 14(c), with the increased number of positions, the accuracy of position
recognition drops. Considering the size of the packed goods, it could not be deliberately small
(generally larger than 5 cm in diameter). Thus, the number of candidate positions could not exceed
15. To this concern, we can claim that the overall material recognition accuracy is above 94%.

Human Interference. We explore the impact of interference from people moving around on
the performance of the system. The number of interfering people is increased from 1 to 3. When
an experimenter collects data in front of the shelf, different numbers of other experimenters are
free to move within 3 meters of the shelf as a disturber. As shown in Figure 14(a), as the number of
disturbers increases, the accuracy of the system fluctuates slightly, but still maintains at a relatively
high level.

7.4 Behavior Recognition

We evaluate the performance of the behavior recognition module in this section. Four behav-
iors including (1) taking a targeted item from the shelf, (2) putting back the target to the shelf,
(3) putting a commodity in the cart, and (4) taking the target out from the cart are recognized in
this module. Figure 15(a) shows the recognition results of four shopping behaviors with multiple
experiments, with an average accuracy of 85.5%. And the accuracy of position recognition and the
factors that influence behavioral identification are discussed in this section.

Initial Position Recognition. As depicted in Figure 8(c), we mimic the supermarket environ-
ment with items on the shelf. We collect the phase change at each tag when the item at differ-
ent initial locations starts moving in advance into the KNN algorithm for training. In this exper-
iment, we put 24 bottles of beverage on two layers of shelves, each with 12 bottles. As shown in
Figure 13(a), we can achieve 96.6% accuracy in detecting which bottle is picked.

Intensive Deployment Scenario. The scenes in which the shelves are densely arranged in
the mall must be considered. We place two shelves vertically together. Shelf A is attached to a tag
array with 14 tags and shelf B is attached with 7 tags to compare. Two experimenters are required
to make actions simultaneously to evaluate the impact of human interference within close range.
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Fig. 15. Shopping behavior recognition accuracy in different scenarios.

As Figure 15 shows, the accuracy of behavior recognition is reduced due to the reduction of the
sampling rate and the interference of the action in an excessively dense scenario, but for the case
of 14 tags, the average accuracy is still over 83%.

Impact of Position. Each experimenter is asked to repeat the above four actions to collect
data at different positions in front of the shelf as shown in Figure 8(c). Since we deploy the tags
horizontally due to the shape of the shelves, items moving at different locations will have different
effects on each tag. One layer in the shelf is divided into 12 zones from left to right. The location
of each zone is shown in Figure 8(d). Data from different locations are trained in the same model.
We test the accuracy of the model in Zone 3, Zone 6, Zone 9, and Zone 12 as shown in Figure 15(d).
Since Zone 12 is too far edged, the reflected signal of the target has less influence on the leftmost
tag resulting in low behavior recognition accuracy in this zone. And our models maintain high
precision in other zones. For the double-shelf scenario, when the experimenter takes a commodity
at position 3, the distance of another experimenter who is simultaneously performing the action
is less than 0.5 m, which reduces the recognition accuracy.

8 RELATED WORK

In this section, we briefly review the related literature in RFID tracking and recognition, which
can be broadly divided into the following categories.

Device-Based Tracking. Previous researches have shown that the RFID tags attached to the tar-
get can be utilized for target tracking. For example, Tagoram [40] utilizes moving tags to simulate
the inverse SAR antennas and pinpoints a tag at an accuracy of a few centimeters. RF-IDraw [32]
tracks a moving tag and deduces its trajectory in the air. RF-Echo [4] introduces a custom-designed
active ASIC tag and achieves decimeter accuracy in long-range indoor NLOS scenarios. Trio [6]
provides an RF interference-based tag localization solution, which locates the target at centimeter
level. These systems require the commodity to carry an RF device such as an RFID tag in order to
be identified and localized.

Contactless Tracking. As an emerging solution for positioning, device-free approaches gain
lots of attention in recent years. Tadar [42] establish a Tag-free commodity reflection model and
proposed a signal difference method, which shows the potential of device-free sensing in an RFID
system. Its accuracy is decimeter level. RF-finger [29] uses RSSI and tag arrays to track the finger
movement at centimeter level accuracy. It requires the fingers to be very close to the tag and
it is not able to track multiple fingers. D-Watch [34] uses the AOA method to locate multiple
commodities at an accuracy of 6 cm. However, it requires a dense deployment of readers and tags
which significantly limits its real-life application. Tamera, on the other hand, only needs a sparse
deployment and can track multiple targets at high accuracies.

RFID-Based Sensing. Many exciting new applications have been enabled by RFID sensing.
Liquid level [1], vibration frequency [9, 41], orientation [36], breathing [14], and shape [15, 33]
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can be perceived with an RFID system. Tagscan [33] can accurately identify the liquid type, but a
fixed container and stable environment are required. Echoscope [30] extracts unique features from
the backscatter signals to reveal the internal status of packages. The idea of replacing RFID chips
with sensors [31] makes RFID more effective in the field of sensing. Tamera is able to recognize
the material type of the target as long as the target is moved.

RFID-Based Behavior Analysis. RF-finger [29] and Rio [22] implement several gesture recog-
nitions in close range. Li et al. [17] exploit a deep convolutional neural network for activity recog-
nition with passive RFID readings. ShopMiner [26], TagBooth [18], and Konark [23] deeply analyze
the user’s shopping behavior based on the information feedback from the tag attached to the com-
modity. Tamera, on the other hand, aims to realize contactless shopping behavior recognition at
high accuracies without attaching any tag to the target.

9 CONCLUSION

In this work, we propose Tamera, a contactless RFID-based multi-commodities deep sensing sys-
tem. It combines high-precision trajectory tracking of tag-free commodities, with material recog-
nition and shopping behavior recognition for an in-depth customer’s shopping behavior study. We
propose a novel method of using signal superposition instead of signal separation to address the
well-known challenging tag-free multi-commodities tracking. Our design seamlessly integrates
the physical model and the popular deep learning schemes to achieve high-precision tracking and
recognition. We implement the prototype of Tamera using COTS RFID devices. Our comprehen-
sive experiments demonstrate that Tamera can achieve an average accuracy of 1.3 cm and 2.7 cm
for single- and multi-commodities tracking, 95% for material recognition, and 93% for shopping
behavior recognition. Compared with video-based approaches, this work has the benefit of better
accuracy and protecting users’ privacy naturally.

This work is a stepping stone for the vision of recognizing users’ behavior accurately with con-
tactless approaches. A number of challenging issues are left for future study. First, we need to
further improve the accuracy (say, sub-centimeter) of tag-free tracking of multiple commodities
(say tens concurrently) for a range of innovative applications. Second, system robustness is a criti-
cal requirement for the possible adoption of this technique in daily usage. We need to improve its
robustness even in a hostile environment, possibly integrating non-wireless techniques.
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