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ABSTRACT

Integrated Sensing and Communication (ISAC) is gradually becoming a reality due to the significant
increase in frequency and bandwidth of next-generation wireless communication technologies. There-
fore it becomes crucial to evaluate the communication and sensing performance using appropriate
channel models to address resource competition from each other. Existing work only models the
sensing capability based on the mutual information between the channel response and the received
signal, and its theoretical resolution is difficult to support the high-precision requirements of ISAC
for sensing tasks, and may even affect its communication optimal.
In this paper, we propose a sensing channel encoder model to measure the sensing capacity with higher
resolution by discrete task mutual information. For the first time, derive upper and lower bounds on
the sensing accuracy for a given channel. This model not only provides the possibility of optimizing
the ISAC systems at a finer granularity and balancing communication and sensing resources, but
also provides theoretical explanations for classical intuitive feelings (like more modalities more
accuracy) in wireless sensing. Furthermore, we validate the effectiveness of the proposed channel
model through real-case studies, including person identification, displacement detection, direction
estimation, and device recognition. The evaluation results indicate a Pearson correlation coefficient
exceeding 0.9 between our task mutual information and conventional experimental metrics (e.g.,
accuracy).

Keywords ISAC · sensing channel · wireless sensing · mutual information
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1 Introduction

The recent development of next-generation (5G-Advanced and 6G) communication technology motivates the integrated
sensing and communication (ISAC) studies from various perspectives, such as the localization models Sayed et al.
[2005], Shen et al. [2010], Wang et al. [2018a], the power and sub-channel allocation algorithms Phunchongharn et al.
[2013], Zhang et al. [2017], the dual-functional waveforms design Zhang et al. [2024] and so on. ISAC has been
conceptualized, designed, and optimized for making communication and sensing functions complementary to each
other.

However, the goal of wireless communication is to minimize the impact of channel noise within the Shannon’s limit,
while the goal of wireless sensing is to utilize the channel noise and then to identify the entities or the corresponding
nature of the channel. The different goals bring the inherent trade-off between communication and sensing performance
when integrating them together. To better address such resource competition from each other, it is essential to quantify
the ability to communicate and sense under a given channel. The communication aspects can be bounded by Shannon’s
theorem, but the sensing part lacks unified and efficient theory support. Existing work on sensing theory suffers
from deficiencies in different aspects, such as limited applicable tasks Shen et al. [2010] and incomplete evaluation
metrics Zhang et al. [2024], Phunchongharn et al. [2013].

In the present paper, we will theoretically analyze the sensing capability and measure it based channel encoder model.
The core problem of wireless sensing is that of reproducing via the interfered signals at the receiver either exactly or
approximately the interfering source, considered as the sensed object. As illustrated in Fig 1, the ISAC system can be
formulated by Y = HX+N, where Y is the received signal, X is the transmitted signal, H is the channel status, and
N is the noise that might be introduced by sensed objects.
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Figure 1: Schematic diagram of a general ISAC system.

Intuitively, the system sensing capability can be evaluated by analyzing how the received signals reflect the channel
status, such as sensing mutual information I(H;Y) Liu et al. [2021a], Zhang et al. [2021]. But it doesn’t work well for
the following two reasons. First, it is difficult to obtain complete information about the signal itself, we can only identify
the sensory objects by analyzing several received signal features, such as the time-of-arrival (TOA), angle-of-arrival
(AOA) and received signal strength (RSS). The relationship between the sensing capability of such features and the
signal itself is ambiguous. For example, when containing the same level of noise, the AoA estimation error is related to
the orientation of the antenna array Tai et al. [2019], as shown in Fig 2. Second, frequently the sensed objects have
various types, including moving entities placed in the channel, temperature or humidity fields affecting the channel, etc.
The sensing capability analysis must be designed to operate for all possible types, not just the one that will actually be
chosen since this is unknown at the time of design.

Fortunately, if the number of signal features and object types in the sets is finite, then the monotone function of the
mapping between them can be regarded as a measure of the sensing capability when the pair is chosen from the sets.
The most natural choice of such a monotone function is still mutual information for various reasons:

1. It is suitable to the communication theorem and thus easier to integrate. The ultimate goal of sensing capability
assessment is to provide an optimization basis for the trade-off between communication and sensing in ISAC
systems so that entropy-based methods can achieve calculations more efficiently.

2. It evaluates the amount of information contained in one random variable about another random variable, which
is nearer to our intuitive feeling as to the proper measure for sensing: how much information is obtained in the
observed signal features about the sensed object.
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Figure 2: Due to the nonlinear relationship between AoA and the phase change of received signals, even with comparable
capabilities in estimating channel responses, there can still be order-of-magnitude differences in the estimation error of
AoA when the orientation of the antenna array varies..

In this paper, we propose a general sensing channel encoder model to help determine the sensing capability – the upper
bound and lower bound of error in restoring the sensed object from given wireless signal features. Main contributions
are as following:

• We propose a sensing channel encoder model to describe the sensing system, and derive the fundamental limits
of specific sensing objects under given signal features, in terms of a performance measure called discrete task
mutual information (DTMI). This approach unifies such information from different features in a canonical
form as a weighted sum associated with the weights characterizing the information intensity.

• Based on DTMI, we first provide upper and lower bounds of sensing errors for ubiquitous sensing systems
and give a sufficient condition for lossless sensing. It enhances the interpretability of current sensing systems
and can be further used to guide the problem of resource allocation for communication and sensing in ISAC
systems.

• We validate the effectiveness of the proposed sensing system model in several real-world cases, including binary
classification tasks such as Wi-Fi-based human identification and RFID-based displacement detection, and
multi-classification tasks such as direction sensing based on electromagnetic signals and device identification
based on traffic features. The experiment results show that the consistency between our proposed sensing
capability evaluation method and the actual task results is up to 0.9 (Pearson correlation coefficient).

The rest of the paper is organized as follows. Section 2 reviews the related work. We introduce the sensing channel
encoder model in Section 3. In Section 4, we give a theoretical explanation for some classical phenomena in sensing
systems. Finally, we evaluate its performance in real examples in Section 5.

2 Related work

2.1 Sensing systems based on communication devices.

ISAC is widely acknowledged as a pivotal enabler for a myriad of emerging applications, encompassing smart
manufacturing, smart homes, and smart cities Bliss [2014]. The deployment of professional sensing equipment on
a large scale is often impeded by their substantial size and high costs.In the context of the burgeoning Internet of
Things (IoT), a multitude of endpoints, originally intended for communication purposes such as WiFi, speakers and
microphones, RFID, among others, have gained prominence due to their abundance and cost-effectiveness in comparison
to specialized equipment. Consequently, a growing number of researchers and practitioners are exploring the use
of these devices for sensing tasks. These applications range from localization and trajectory tracking to material
identification and health monitoring.

(1) Localization and trajectory tracking. The proliferation of wireless devices, coupled with the development of
wireless network infrastructure, has led to a significant increase in their deployment within both workplaces and homes.
Recently, there has been a notable trend towards employing these communication devices for mobile trajectory tracking.
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Wi-Fi based systems Wang et al. [2018b], Kotaru et al. [2017] use Channel State Information/Received Signal Strength
Indicator (CSI/RSSI) for localization Kotaru et al. [2017], Qian et al. [2017], Ali et al. [2015], gesture tracking Wang
et al. [2018b], Yu et al. [2018], gesture recognition Ali et al. [2015], Tan and Yang [2016], Abdelnasser et al. [2015], etc.
Within this context, Widar Qian et al. [2017] quantifies the relationship between CSI dynamic changes and user location
and speed to achieve an average position error of 25 cm. RFID-based systems can achieve centimeter-level tracking
accuracy using phase-based methods Yang et al., Adib and Katabi [2013], Wang et al. [2018c, 2014, 2016], Chang
et al. [2018]. For instance, RF-IDraw Wang et al. [2014] utilizes interference techniques to measure the relative phase
between multiple RFID readers, while Tadar Adib and Katabi [2013] achieves through-wall tracking by exploiting
multipath signal variations caused by human movement. Tagoram Yang et al. uses the concept of "virtual antennas"
and phase holography to map measured phases to possible tag locations and calculates moving trajectories through
phase changes. However, the positioning accuracy of these works is influenced by many factors, such as the number of
antennas and noise levels. There is still a lack of theoretical means to quantify the impact of these factors on the results.

(2) Material identification. In contrast to professional equipment, which can cost tens of thousands of dollars, radio
frequency signal transceivers are comparatively less expensive and compact. This makes them more feasible for
deployment in lightweight sensing scenarios such as homes, or large-scale scenarios like warehouses. For instance,
we can utilize commercial WiFi signals to detect whether the purchased fruits are ripe Tan and Yang [2021], Liu et al.
[2021b]. In addition, compared with visible light, the frequency of wireless signals is lower, which makes them have
better propagation performance in low light or non-line-of-sight environments. For example, for liquids placed in
opaque containers, many radio frequency signal-based systems can identify the solution concentration with a granularity
of 1% Liang et al. [2021], Shang et al. [2022, 2023].

(3) Health monitoring. Both heartbeat and respiratory behavior produce corresponding body-conducted sounds.
Consequently, sound has emerged as a significant modality for the sensing of vital signs. Xiong et al. Li et al. [2022,
2020], Liu et al. [2021c] have extended the effective distance of acoustic sensing by utilizing ubiquitous sound waves,
achieving accurate personnel tracking, gesture tracking, eye movement tracking, etc. in multiple scenarios. For a long
time, auscultation has been an important part of sleep and respiratory related research, so many works use microphones
on mobile devices to capture the air-conducted sounds of respiration for snoring detection Azarbarzin and Moussavi
[2010], sleep apnea detection Yadollahi et al. [2010]. Han et al. Han et al. [2023] employ in-ear microphones to
facilitate sense and user identity authentication via respiratory behavior analysis. Owing to its non-contact characteristic,
radio frequency signals have the potential to alleviate pressure on users during monitoring or sensing processes. This
has led to a surge in academic interest in this field in recent years. Wang et al. Wang et al. first propose the Fresnel
zone theory of WiFi signal sensing in free space, theoretically exploring the impact of human breathing depth on the
reception of radio frequency signals. In addition, Liu et al. Liu et al. [2019] explore the feasibility of using RFID tags to
achieve non-contact chest displacement.

However, unlike the performance of communication systems that can be reasonably assessed using theoretical metrics
like channel capacity, the current evaluation of sensing system performance largely relies on experimental approaches.

2.2 Performance measurement of the ISAC system.

Traditional research often treats “communication" and “sensing" as two distinct systems. However, a growing body of
recent studies has demonstrated that these two concepts are intrinsically interconnected in the context of information
theory, forming an intriguing “odd couple" Bliss [2014]. In recent years, a significant number of researchers have
dedicated their efforts to examining the theoretical performance of systems through the lens of synesthesia. A typical
system modeling method is the linear Gaussian model, which is Xiong et al. [2023]

Y = HX+N, (1)

where Y is the received signal, X is the transmitted signal, H is the channel matrix, and N is the noise matrix. From the
perspective of communication, the fundamental problem is how to accurately estimate the transmitted signal X from the
received signal Y. In accordance with Shannon’s second law, the ultimate performance of a channel is dictated by its
capacity. This capacity is intrinsically linked to the mutual information between X and Y, denoted as I(X;Y). From
the perspective of sensing, the basic problem is to estimate H. Similarly, researchers utilize the mutual information
between H and Y to characterize system performance Liu et al. [2021a], Zhang et al. [2021].

However, as introduced in Sec. 2.1, we are increasingly unsatisfied with merely sensing the channel response H and
ubiquitously sensing with communication devices. In this case, mutual information I(Y;H) cannot fully characterize
the sensing performance of the system. For instance, MapFi Tong et al. [2021] shows that under the same estimation
level for H, the accuracy of localization using angle of arrival varies with different orientations of the antenna array.
Moreover, traditional channel theory is often based on Shannon’s second law, which assumes that the random variables
used for encoding are independent and identically distributed, a condition difficult to meet when conducting ubiquitous
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Figure 3: Sensing channel encoder.

sensing. Therefore, we need to construct a new channel model to adapt to the increasingly developed integrated
communication and sensing systems.

3 Sensing channel encoder model

Sensing of discrete status finds broad applications in both industrial production and daily life scenarios, encompassing
areas such as material identification, image recognition, and human presence detection. In this section, we establish a
discrete sensing channel encoder model to analyze the system’s sensing capability. Our analysis reveals that, with the
status to be sensed being fixed, the DTMI directly dictates the lower and upper bounds of the expected sensing error.
Proceeding forward, we first introduce the definitions related to the discrete sensing channel encoder model, followed
by an exploitation of DTMI to analyze the lower and upper bounds of the expected sensing error.

3.1 Model definitions.

A typical sensing process often comprises several components: the target status to be sensed (W ), the feature (Xn)
designed to sense the status, the sensing channel embedding (Y n) obtained through the sensing system, and the outcome
(Ŵ ) derived after processing the signal. We analyze the sensing system as shown in the Fig. 3. The status W has m
possible values, which together form the set W = {w1, · · · , wm}. The probability that the target is in the i-th status
is Pr(W = wi) = p(wi). To facilitate the sensing of statuses, we construct n-dimensional independent features Xn

to represent the status W . Given the status as wi, the feature Xn(wi) is given by Xn(wi) = [X1(wi), · · · , Xn(wi)].
Upon transmission and subsequent data processing, the receiver is likely to receive this feature with a probability
denoted as p(yn|xn), which we represent as Y n. Subsequently, the receiver assesses the condition of the sensed target
utilizing the acquired features Y n and decoding rules g. The result is given by Ŵ = g(Y n). For instance, in a task
of material identification using radio frequency (RF) signals, the targets possess varying materials (W ). We exploit
the characteristic that different materials affect RF signals differently to design feature Xn, which are related to the
amplitude of RF signals. Then, using a receiver that captures electromagnetic waves in the space and processes them
according to a sensing algorithm, we acquire the sensing channel embedding denoted as Y n. Finally, based on certain
decision rules, we correlate Y n with the corresponding Xn to ascertain the result Ŵ .

To quantify the performance of the sensing system, we initially define the “conditional error probability" and the
“expected value of the error". The former represents the probability that the sensed result does not match the actual
status wi given that the target status is wi, while the latter signifies the expectation of the conditional error probabilities.
Furthermore, we introduce several definitions (Definition 4, 5, and 6) to facilitate our analysis of the upper and lower
bounds of the expected error value.

Definition 1. The discrete task mutual information (DTMI) is defined as the mutual information between the feature
Xn and the channel embedding Y n, i.e., I(Xn;Y n).

Definition 2. The conditional error probability ξi when the target status is wi is defined as:

ξi = Pr(Ŵ ̸= wi|W = wi). (2)

Definition 3. The expected value of the error, denoted as Pn
E , is articulated as follows:

Pn
E =

m∑
i=1

p(wi)ξi. (3)

5
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Definition 4. If a sequence Xn = [X1, · · · , Xn] of length n, where each dimension is statistically independent of one
another, we refer to sequence Xn as an n-dimensional independent sequence. Their joint probability density function
is given by:

p(xn) = Πn
i=1p(xi). (4)

Definition 5. For two n-dimensional independent sequences Xn and Y n, if the joint distribution of (Xn, Y n) is given
by

p(xn, yn) = Πn
i=1p(xi, yi), (5)

we refer to (Xn, Y n) as a n-dimensional jointly independent sequence.

Definition 6. The jointly matching set B(n)
ε of jointly independent sequence is defined as:

B(n)
ε = {(Xn, Y n) ∈ Xn × (Y )n :∣∣∣∣∣− 1

n
logp(xn)− 1

n

n∑
i=1

H(Xi)

∣∣∣∣∣ < ε∣∣∣∣∣− 1

n
logp(yn)− 1

n

n∑
i=1

H(Yi)

∣∣∣∣∣ < ε∣∣∣∣∣− 1

n
logp(xn, yn)− 1

n

n∑
i=1

H(Xi, Yi)

∣∣∣∣∣ < ε

}
.

(6)

where (Xn, Y n) is the n-dimensional jointly independent sequence. H(Xi), H(Yi), and H(Xi, Yi) are the entropy of
Xi, Yi, and (Xi, Yi), respectively.

3.2 Lower bound on expected error.

The current evaluation of sensing systems’ performance predominantly relies on experimental assessments. While
experimental evaluations are highly effective in gauging system performance, conducting rigorous controlled experi-
ments in real-world scenarios is exceedingly challenging. Consequently, in many instances, it is difficult to ascertain
whether the failure to achieve the desired accuracy is due to inadequately designed sensing features or simply unforeseen
interference during the data acquisition process. In this section, we give a lower bound on the expected error value
based on DTMI, which helps us analyze the ultimate performance of the sensing system.
Theorem 1. For a sensing task W with m statuses, we use n independent features to describe the status of the target.
The expected value of the error Pn

E satisfies the following lower bound:

Pn
E +

H(Pn
E)

logm
≥ H(W )− I(Xn;Y n)

logm
, (7)

where H(Pn
E) = −Pn

E logPn
E − (1− Pn

E) log(1− Pn
E).

Proof. We first prove that the sensing model we defined forms a Markov chain. Then we combine Fano’s inequal-
ity Verdú et al. [1994] and some properties of Markov chains to give a lower bound for Pn

E .

Lemma 1. For the sensing model described in Section 3, the target status W , the feature Xn, the received channel
embedding Y n, and the sensing result Ŵ form two Markov chains, i.e., W → Xn → Y n → Ŵ and Ŵ → Y n →
Xn → W .

Proof. For a Markov chain, some simple consequences are as follows Cover [1999]:

• If X → Y → Z is a Markov chain, Z, Y,X form a Markov chain, i.e., Z → Y → X .

• For three random variables X , Y , and Z, if Z = f(Y ), then X,Y, Z form a Markov chain, i.e., X → Y → Z.

According to the deification of sensing model, the feature is a function of the target status, i.e., Xn = f(W ); the
sensing feature Y n is a function of the status feature Xn, i.e., Y n ∼ p(yn|xn); and the sensing result Ŵ is a
function of the sensing feature Y n, i.e., Ŵ = g(Y n). Therefore, the target status W , the feature Xn, the channel
embedding Y n, and the sensing result Ŵ form a Markov chain, i.e., W → Xn → Y n → Ŵ . Besides, we have
Ŵ → Y n → Xn → W .

6



Towards the limits: Sensing Capability Measurement for ISAC Through Channel Encoder A PREPRINT

According to the Fano’s inequality Cover [1999], if three random variables X,Y, Z form a Markov chain, i.e.,
X → Y → Z, we have:

Pr (X ̸= Z) ≥ H(X|Z)−H(Pr(X ̸= Z))

log(|X |)
. (8)

where H(X|Y ) is the conditional entropy of X given Y . For the Markov chain W → Xn → Y n → Ŵ , according to
the total probability formula and Ferno’s inequality, we have:

Pn
E = Pr(Ŵ ̸= W ) ≥ H(W |Ŵ )−H(Pn

E)

log(|W|)
=

H(W )− I(W ; Ŵ )−H(Pn
E)

logm
(9)

According to the Data-processing inequality Cover [1999], if three random variables X , Y , and Z form a Markov
chain, X → Y → Z, then we have I(X;Z) ≤ I(X;Y ), where I(X;Y ) is the mutual information between X and
Y . For the Markov chain W → Xn → Y n → Ŵ , we have I(W ; Ŵ ) ≤ I(W ;Y n). And for the Markov chain
Ŵ → Y n → Xn → W , we have I(Y n;W ) ≤ I(Y n;Xn). As a result, we have:

I(W ; Ŵ ) ≤ I(Xn;Y n). (10)

Substituting Equ. (10) into Equ. (10), we have:

Pn
E +

H(Pn
E)

logm
≥ H(W )− I(Xn;Y n)

logm
. (11)

3.3 Upper bound on expected error.

In communication, Shannon’s second theorem Shannon [1948] posits that for a given signal, error-free transmission can
always be achieved as long as we employ code words that are sufficiently long to encode the message. This issue is
equally pertinent in sensing: when the dimensionality n of the feature is sufficiently large, what is the upper bound on
the expected error? In this section, we derive an upper bound based on DTMI (Theorem 2) and provide a sufficient
condition under which error-free sensing can be attained (Theorem 3).
Theorem 2. For a sensing task with m statuss, we use n independent features to describe the status of the target. For
sufficiently large n, the expected value of the error Pn

E satisfies the following upper bound:

Pn
E ≤ ε+

m∑
k=1

p(wk)

m∑
j ̸=k

23nε−
∑n

i=1 I(Xi(wj);Yi(wk)) (12)

Proof. The expected error Pn
E is influenced by the decision rule g, with the maximum likelihood criterion being a

commonly employed rule in practical scenarios. However, for the sake of facilitating analysis, we introduce a novel
decision rule defined in conjunction with the matching set B(n)

ε (Definition 6), where in the result Ŵ is determined
as wi whenever the channel embedding Y n and the feature Xn(wi) corresponding to the message wi form a jointly
matching set. Under this rule, we first estimate the probability of Xn, Y n constituting a jointly matching set (Lemma 2
to 4) and subsequently present a suboptimal upper bound on the expected error (it is noted that employing alternative
decision criteria might yield tighter upper bounds).

The decoding rule g. To obtain sensing outcomes from Y n, we employ the following rule g:

• We declare that the target statue is wi if (Xn(wi), Y
n) ∈ B

(n)
ε and there is no other status wj such that

(Xn(wj), Y
n) ∈ B

(n)
ε .

• If there are multiple statuss wj such that (Xn(wj), Y
n) ∈ B

(n)
ε or there is no status wi such that

(Xn(wi), Y
n) ∈ B

(n)
ε , an error is declared.

To estimate the probability of an event occurring, we first prove the following lemma about matching sets.

Lemma 2. For a n-dimensional jointly independent sequence (Xn, Y n) and a matching set B(n)
ε , when n → ∞, the

probability that (Xn, Y n) is in the matching set B(n)
ε is close to 1, which is

Pr((Xn, Y n) ∈ B(n)
ε ) → 1. (13)

7
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Proof. According to the Chebyshev’s Law of Large Numbers, when the number of observations n is sufficiently
large, the sample mean of n independent and identically distributed random variables converges in probability to their
common expected value. Observing that the entropy is essentially the expectation of the logarithm of the reciprocal of
probabilities, we leverage these two premises to underpin our proof.

According to Chebyshev’s Law of Large Numbers, given ε > 0, there exists n1, so that for all n > n1, the following
holds:

P1 = Pr

(∣∣∣∣∣− 1

n
log p (Xn)− 1

n

n∑
i=1

H(Xi)

∣∣∣∣∣ ≥ ε

)

= Pr

(∣∣∣∣∣ 1n
n∑

i=1

log p (Xi)−
1

n

n∑
i=1

E (log p(Xi))

∣∣∣∣∣ ≥ ε

)
<

ε

3
.

(14)

Similarly, there exists n2 and n3, so that for all n > n2, the following holds:

P2 = Pr

(∣∣∣∣∣− 1

n
log p (Y n)− 1

n

n∑
i=1

H(Yi)

∣∣∣∣∣ ≥ ε

)
<

ε

3
, (15)

and for all n > n3, the following holds:

P3 = Pr

(∣∣∣∣∣− 1

n
log p (Xn, Y n)− 1

n

n∑
i=1

H(Xi, Yi)

∣∣∣∣∣ ≥ ε

)
<

ε

3
. (16)

Let n0 = max{n1, n2, n3}, then for all n > n0, the following holds:

Pr((Xn, Y n) ∈ B(n)
ε ) > 1− (P1 + P2 + P3) = 1− ε. (17)

Going further, we consider the scenario where (Xn, Y n) forms a jointly independent sequence (Definition 5), and we
examine the probability of them constituting a joint matching set. Initially, drawing upon Definition 6, we estimate the
counts of elements in both the matching set and the jointly matching set, which are related to the entropy. Specifically, the
number of elements in the matching set for Xn and Y n are approximately 2

∑n
i=1 H(Xi) and 2

∑n
i=1 H(Yi), respectively,

while the count of their joint matching sequences is roughly 2
∑n

i=1 H(Xi,Yi). Building on this foundation, Lemma 4
furnishes an estimate for the probability that (Xn, Y n) forms a joint matching set.

Lemma 3. The upper bound of the number of elements in the matching set of jointly independent sequence B
(n)
ε is

given by: ∣∣∣B(n)
ε

∣∣∣ ≤ 2nε+
∑n

i=1 H(Xi,Yi), (18)

where H(Xi, Yi) is the entropy of (Xi, Yi), and |.| denotes the number of elements in the set.

Proof. According to the Definition 6, if (Xn, Y n) ∈ B
(n)
ε , we have:

p(xn, yn) ≥ 2−nε−
∑n

i=1 H(Xi,Yi). (19)

8
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As a result,

1 =
∑

(xn,yn)∈Xn×(Y )n

p(xn, yn) ≥
∑

(xn,yn)∈B
(n)
ε

p(xn, yn) ≥ 2−nε−
∑n

i=1 H(Xi,Yi)|B(n)
ε |. (20)

Therefore, we have
|B(n)

ε | ≤ 2nε+
∑n

i=1 H(Xi,Yi). (21)

Lemma 4. For a n-dimensional jointly independent sequence (X̂n, Ŷ n) and a matching set B(n)
ε , if (X̂n, Ŷ n) ∼

p(xn)p(yn), i.e., X̂n and Ŷ n are independent with the same marginals as p(xn, yn), then

Pr((X̂n, Ŷ n) ∈ B(n)
ε ) ≤ 23nε−

∑n
i=1 I(Xi;Yi), (22)

where I(Xi;Yi) is the mutual information between Xi and Yi.

Proof. According to the definition of the jointly matching set, we have:

log(p(xn)) ≤ nε−
n∑

i=1

H(Xi)

log(p(yn)) ≤ nε−
n∑

i=1

H(Yi)

(23)

The probability of a joint independent sequence (X̂n, Ŷ n) in Bn
ε is given by:

Pr((X̂n, Ŷ n) ∈ B(n)
ε ) =

∑
(xn,yn)∈B

(n)
ε

p(xn)p(yn)

=
∣∣∣B(n)

ε

∣∣∣ 2nε−∑n
i=1 H(Xi)2nε−

∑n
i=1 H(Yi)

≤23nε+
∑n

i=1(H(Xi,Yi)−H(Xi)−H(Yi))

=23nε−
∑n

i=1 I(Xi;Yi).

(24)

We first estimate the probability that the sensing result Ŵ is wrong when the target status is W = wi. We can assume
without loss of generality that the target status is w1. We consider the following events:

Ci =
{
(Xn(wi), Y

n(w1)) ∈ B(n)
ε

}
, i ∈ {1, · · · ,m}. (25)

where yn(1) is the received channel embedding when the target status is w1. Based on the decision rule and Definition 2,
the conditional error probability at this point is given by:

ξ1 = Pr

(
C̄1

m⋃
i=2

Ci

)
≤ Pr

(
C̄1

)
+

m∑
i=2

Pr (Ci) , (26)

where C̄1 is the complement of C1.

According to Lemma 2, we have:
Pr
(
C̄1

)
≤ ε. (27)

Besides, for j ∈ {2, · · · ,m}, the feature Xn(wj) is independent of Xn(w1), so is Xn(j) and Y n(w1). Hence,
according to Lemma 4, we have:

Pr (Cj) ≤ 23nε−
∑n

i=1 I(Xi(wj);Yi(w1)). (28)
Substituting the above results into Eq. (26), we have:

ξ1 ≤ ε+

m∑
j=2

23nε−
∑n

i=1 I(Xi(wj);Yi(w1)). (29)

According to Definition 3, we have:

Pn
E =

m∑
k=1

p(wk)ξk ≤ ε+

m∑
k=1

p(wk)

m∑
j ̸=k

23nε−
∑n

i=1 I(Xi(wj);Yi(wk)). (30)

9
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Finally, Theorem 3 provides a sufficient condition for error-free sensing, indicating that for achieving error-free sensing,
a sufficient number of features with high DTMI must be identified 1.
Theorem 3. For a sensing task with m = 2nR statuss, we use n independent features to describe the status of the
target. For a sufficiently large n, if R satisfies the following equation,

R < I

(∑
k ̸=j X̄

n(wk)

m− 1
; Ȳ n(wj)

)
, (31)

where X̄(wj) and Ȳ (wj) is the mean Xn(wj) and Y n(wj), we have ξj → 0.

Proof. In Theorem 2, we derive an upper bound estimate for the expected error Pn
E . Capitalizing on the convexity

property of mutual information, we leverage Jensen’s inequality to provide a sufficient condition for a tight error
estimation. This approach ensures that our estimate effectively captures the inherent relationship between the variables,
harnessing the convexity to yield a more robust and accurate analysis of the error’s expected magnitude without loss of
generality.

According to the Jensen’s inequality, if f is a convex function and X is a random variable, we have:

f(E(X)) ≤ E(f(X)). (32)

Since the mutual information is a convex function Cover [1999], we have:

nI(X̄n; Ȳ n) ≤ n

n∑
i=1

1

n
I(Xi;Yi), (33)

where X̄n and Ȳ n is the mean of Xn and Y n. As a result, for a j ∈ {1, · · · ,m, the Equ. (26) can be rewritten as:

ξj ≤ ε+

m∑
k ̸=j

23nε−nI(X̄n(wk);Ȳ
n(wj)). (34)

Since functions 2x and I(X;Y ) are both convex functions, and function 2x is monotonically increasing, 2I(X;Y ) is
also a convex function. According to the Jensen’s inequality, we have:

(m− 1)

m∑
k ̸=j

1

m− 1
2nI(X̄

n(wk);Ȳ
n(wj)) ≥ (m− 1)2

nI

(∑m
j ̸=k X̄n(wk)

m−1 ;Ȳ n(wj)

)
. (35)

As a result, for m = 2nR and sufficiently large n, if R satisfies the Equ. (31), we have:

ξj ≤ ε+ 23nε2
n

(
R−I

(∑m
j ̸=k X̄n(wk)

m−1 ;Ȳ n(wj)

))
→ 2ε. (36)

4 Corollary

Previous excellent sensing systems have summarized many valuable experiences, such as multi-modal systems tend to
achieve better sensing performance. However, these experiences currently lack theoretical explainability. In this section,
we employ sensing channel encoder model and DTMI as tools to attempt to explain some classic phenomena.

4.1 Why do multimodal systems tend to exhibit superior performance?

In a communication system, Shannon’s second theorem stipulates that the error rate can be reduced to an arbitrary low
level, provided that the codewords are sufficiently lengthy. Similarly, many previous research works have shown that
using multi-modality for sensing helps achieve better performance, which can be explained by the theorem we proved
previously. In this subsection, we will theoretically explain why multi-modal sensing systems are more capable of
achieving superior sensing performance based on the DTMI.

1This requirement diverges from the conclusion in communications, where merely having a sufficient number of codewords is
typically sufficient.
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Figure 5: The sensing channel of multi-modal sensing system.

Fig. 5 shows a schematic diagram of a multi-modal system. For the target state W , we use n modalities to sense it. The
channels of different modalities are directly independent of each other. For example, in order to identify the material of
the target, we use three modalities: vision, sound wave, and radio frequency signal for sensing. The transmission of
visual signal, sound wave signal, and radio frequency signal is independent of each other. According to the Theorem 1,
when the number of states m remains unchanged, the lower bound of the expected value of the error Pn

E is related to
I(Xn;Y n). Note that both mutual information and conditional mutual information are non-negative. When we add a
new mode, we have

I(Xn+1;Y n+1) = I(Xn, Xn+1;Y
n, Yn+1)

=I(Xn;Y n) + I(Xn;Yn+1|Y n) + I(Xn+1;Y
n+1|Xn)

≥I(Xn;Y n),

(37)

where Xn+1 = [X1, X2, . . . , Xn, Xn+1] and Y n+1 = [Y1, Y2, . . . , Yn, Yn+1]. Therefore, the more modalities we use,
the larger the mutual information I(Xn;Y n), the lower the theoretical lower bound of the expected value of the error.

4.2 How do we compare which of two sensing features is better?

In the process of designing a sensing system, it is crucial to carefully craft the sensing features. To show that feature X is
better than feature X ′, we usually need to run many micro-benchmarks. While experimental validation is a compelling
method of verification, it frequently involves intricate setup procedures and can be time-consuming. Moreover, due to
the challenge of deploying tests across a wide range of scenarios, it is often difficult to ascertain whether feature X is
truly superior to feature X ′ or if this conclusion holds only in specific contexts.

In this paper, we propose DTMI which can reflect the performance of sensing features to a certain extent. Specifically,
we consider two features X and X ′. After passing through the sensing channel, their corresponding channel embeddings
are Y and Y ′, respectively. According to Theorem 1 and Theorem 2, both the upper and lower bounds of the expected
error are related to the DTMI. If the DTMI I(X;Y ) > I(X ′;Y ′), the upper and lower bounds of the expected value of
the error PE will be reduced, which means that it is easier to achieve good performance using X as sensing features.
This necessitates alternative approaches, beyond experimental validation, to assess the performance of designed sensing
features.

4.3 Is data pre-processing a “cure-all" solution?

Since data contains a lot of noise and interference, sensing systems usually include a data preprocessing module when
they are designed, which is used to improve data quality for subsequent processing. Previous studies have shown that
preprocessing can often improve sensing performance. Now our questions are: can we accomplish any sensing task
with arbitrary accuracy through sufficiently sophisticatedly designed data preprocessing algorithms?

We refine the sensing channel encoder model depicted in Fig. 3, and the result is illustrated in Fig. 6. Specifically,
for the n-dimensional independent features Xn, after transmission through an actual physical channel, we obtain an
l-dimensional data Dl at the receiver. For instance, to localize a target using radio frequency (RF) signals, we employ
angle of arrival (AoA) as a feature. At the receiver, what we receive is the amplitude and phase of the RF signals, which
are Dl. Subsequently, we subject the received data Dl to data preprocessing, yielding a processed data D̂l. Then we
utilize the sensing algorithm to process the data D̂l to obtain the channel embedding Y n, and finally use the judgment
algorithm to obtain the result Ŵ . In particular, when no data preprocessing is used, it is equivalent to D̂l = Dl.
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Figure 6: The sensing system with data pre-processing.
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Figure 7: Human detection in home environments based on WiFi. (a) Experimental environment and device deployment.
(b) Human detection algorithm based on thresholding method.

Corollary 1. If the following equation holds,

H(W )− I(Xn;Dl) > 1, (38)

lossless sensing cannot be achieved simply by improving the effect of data preprocessing.

Proof. According to the definition Markov chain, the channel shown in Fig. 6 constitutes a Markov chain W → Xn →
Dl → D̂l → Y n → Ŵ . Note that “whether the sensing result is correct" is a binary event, so we have H(Pn

E) ≤ 1.
According to the Theorem 1 and the Data-Processing Inequality, we have

Pn
E ≥ H(W )− I(Xn;Y n)−H(Pn

E)

logm
≥ H(W )− I(Xn;Dl)− 1

logm
≥ 0, (39)

if Equ. (38) holds. Therefore, lossless sensing cannot be achieved simply by improving the effect of data preprocessing.

5 Case Study

We illustrate the role of system performance evaluation based on sensing channel encoder model and DTMI through
several case studies. We begin by examining the application of DTMI in binary classification tasks, using examples of
human detection in home settings via WiFi and appliance cabinet door displacement detection in industrial scenarios
via RFID. For multi-class classification, we consider two instances: the classic sensing problem in ISAC systems –
direction estimation, and device identification based on an open-source traffic dataset. The results demonstrate that
across different cases, the Pearson correlation between the trend of DTMI changes and that of accuracy fluctuations
exceeds 0.9. Furthermore, DTMI can provide estimates of upper and lower bounds for sensing system errors, which is
beneficial for optimizing and balancing ISAC systems.

5.1 Binary classification task.

(1) Human detection based on WiFi devices.

Indoor human detection plays a pivotal role in services such as elderly monitoring. In particular, device-free passive
human detection has garnered significant attention in recent years. While methods based on infrared, pressure sensors,
and the like have been applied to human detection, they either rely on specialized hardware or come at a higher cost.

12
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Figure 8: (a) Channel embedding extraction. (b) The accuracy exhibits a similar trend to the mutual information
estimated by numerical algorithms.
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Figure 9: RFID-based electrical cabinet door state monitoring. (a) Schematic diagram of device deployment. (b) The
cabinet door status monitoring algorithm. (c) The identification accuracy (represented by the bar chart on the left y-axis)
and the mutual information (indicated by the red line on the right y-axis) exhibit a consistent trend of variation.

Moreover, vision-based and infrared-based methods are only effective within line-of-sight (LOS) coverage. Wi-Fi
devices, being one of the most widely deployed radio frequency devices, have led to the implementation of numerous
radio frequency sensing systems around them. In recent years, with the advancement of wireless sensing technology,
Wi-Fi-based approaches have proven to be a promising method for indoor human detection. We deployed an experiment
based on Wi-Fi devices in a residential setting and estimated mutual information using numerical methods. The
experimental results indicate that DTMI exhibits a similar trend to accuracy. In this case study, their Pearson correlation
coefficient exceeds 0.9.

The experimental setup is depicted in Fig. 7a, where we conducted experiments in a 4m× 6m office using an ESP32
device as both transmitter and receiver, each equipped with a single antenna. Additionally, a camera was placed within
the environment to capture video footage for recording ground truth. The sampling rate of the ESP32 is set to 100Hz.
Ten volunteers are invited to participate in the tests. Each data acquisition session lasted 10 minutes: the first 5 minutes
ensured the room is empty, followed by 5 minutes with human activity (walking) inside the room.

State W has two possible values: “personnel present" and “personnel absent". After obtaining CSI data, we initially
sliced the data, then performed data preprocessing to eliminate outliers and apply filtering. Finally, channel embedding
Y is extracted from this processed data and compared against empirical thresholds to ascertain the presence or absence
of individuals, which is the result Ŵ . The entire data processing procedure is illustrated in Fig. 7b. The corfficient of
variation of k-th subcarrier is δk∆T =

σk
∆T

µk
∆T

, where ∆T is the width of the time window, µk
∆T and σk

∆T are the mean and
standard deviation of the k-th subcarrier, respectively. And the channel embedding y is given by

y =
1

n

1∑
i=1

∣∣∣∣ δi∆T

δi∆T−1

∣∣∣∣ , (40)

where n is the number of subcarriers. If y falls within the experiential threshold range, we consider the environment to
be “person absent"; otherwise, it is determined to be person present. The entire data processing workflow is illustrated
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in Fig. 7b. Here, the threshold range is [0.935, 1.065]. Figure 8a shows a example of the channel embedding extraction
process.

In Fig. 8b, the blue solid line illustrates the error rate of human detection as the width of the time window varies
∆T . The dashed lines of other colors represent the mutual information I(W ; Ŵ ) under different numerical estimation
algorithms, namely KraskovStogbauerGrassberger1 Kraskov et al., KraskovStogbauerGrassberger2 Kraskov et al.,
GaoKannanOhViswanath Gao et al. [a], and GaoOhViswanath Gao et al. [b]. The results demonstrate that the trend of
accuracy change is highly consistent with the trend of mutual information change, indicating that in such tasks, DTMI
can serve as an additional performance metric, complementing accuracy, to evaluate system performance.

(2) RFID-based electrical cabinet door direction monitoring. Ensuring electrical safety is crucial during the
manufacturing process. Take the electrical cabinet as an example; if its door is inadvertently opened without timely
detection, there are potential safety hazards, including the risk of electrical fires and electric shock. In the field
of terminal sensing in power systems, electromagnetic transformer-type sensors have traditionally dominated. In
recent years, non-electric quantity sensing technologies such as vibration, stroke, arc light, and spectral sensing have
gained widespread application in digital electrical equipment and power systems. However, these sensing technologies
frequently depend on specialized sensors that boast high sensitivity and accuracy. These sensors are typically burdened
with several drawbacks, including complexities in power supply, large size and weight, high energy consumption,
vulnerability to electromagnetic interference, difficult installation processes, and exorbitant costs. Consequently,
they fall short of meeting the requirements for the development of modern smart power equipment. Given the cost-
effectiveness and ease of deployment of RFID tags, we have developed an algorithm for monitoring cabinet door status
using multiple tags. Furthermore, we employ the mutual information of tasks, as proposed in this paper, to assess the
system’s performance.

We conduct relevant tests in a factory setting. For an industrial metal electrical cabinet (measuring approximately
1m× 1m× 2m) used in production, our objective is to monitor the status of the cabinet door. The RFID reader is
ImpinJ Speedway R420 reader. The RFID system operates in the 920MHz ∼ 926MHz. Two states W are defined:
when the door opening angle is less than 5◦, it is considered “closed"; otherwise, it is deemed “open". We affix several
(1 to 3) anti-metal RFID tags onto the cabinet door and positioned the antenna within the cabinet body. The deployment
configuration of the equipment is illustrated in Fig. 9a. After collecting the RSSI (Received Signal Strength Indicator)
from each tag, we perform differential processing against an initial value, followed by calculating the average of these
differential values across multiple tags. If the average differential exceeds an empirically determined threshold (set here
as 2.5), we conclude that the sensing result is “open"; otherwise, it is concluded as “closed". The detailed steps of data
processing are depicted in Fig. 9b.

The results of the state monitoring are shown in Fig. 9c. Due to the cabinet being made of metal, the electromagnetic
waves suffer from severe multipath interference. Consequently, when only one tag is used, the stability of the data is
poor, and the empirical threshold becomes almost unusable after the tag position shifts by just a few centimeters. This
issue leads to an identification accuracy of less than 60%. This is well reflected by the mutual information I(W ;Y n)
(n = 1), which has a small value in this case. Since the spacing of the tags exceeds half a wavelength, their mutual
influence is minimal, and thus we can approximately consider the reflection signals from different tags as independent
of each other. Consequently, following corollary introduced in Sec. 4.1, as the number of tags increases, so does the
mutual information. We employ GaoOhViswanath Gao et al. [b] method to estimate the mutual information, and the red
line in Fig. 9c illustrates its trend, which increases with the number of tags. As the mutual information increases, so
does the accuracy of state identification.

5.2 Multiple classification tasks.

(1) Direction estimation based on Music algorithm and electromagnetic signal.

Location sensing represents one of the most prevalent and fundamental tasks in the field. A plethora of superior systems
have been developed utilizing location sensing. Nevertheless, for an extended period, there has been a dearth of methods
other than experimental evaluations to assess the influence of numerous factors, including the distance between the
target and both the transmitter and receiver, on localization accuracy. In this case study, we use direction estimation
based on the Music algorithm (one of the most popular localization algorithms) Kotaru et al. and electromagnetic signal
to show the application of the proposed framework.

We consider a two-dimensional direction estimation problem. The basic model setup is shown in the Fig. 10. There
are P transmitting antennas and the position of the p-th transmitting antenna is denoted as rtxp . The receiver has Q
receiving antennas and the position of the q-th receiving antenna is denoted as rrxq . The distance between two adjacent
antennas is drx and dtx for the receiver and transmitter, respectively. The distribution of complex permittivity in space
is E , and the permittivity at position r is E = ϵ(r). For ease of calculation, we set the shape of the target to be a circle
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with a radius of 2R. We set m states, each state corresponds to a direction interval. The direction is defined as the angle
(the X in Fig. 10) between the line connecting the center of the target circle and the center of the receiving antenna array
and the vertical line of the antenna array. The direction interval is [−π, π], which is evenly divided into m sub-intervals.
The scattered signals Es are calculated using Maxwell’s equations and the method of moments Shang et al.. After
adding Gaussian random noise to Es, we estimate signal Y using the MUSIC algorithm. Finally, we use the maximum
likelihood algorithm to determine the direction X corresponding to channel embedding Y , and then output the category
to which X belongs as the result Ŵ .

We first simulated the effect of the distance between the target and the receiver on the direction estimation accuracy.
During the simulation, we set the parameters as follows. We set the number of states m = 9. The frequency of the
electromagnetic signal is 5.0GHz. The distance between the transmitter and the receiver is 8.0m. There are P = 1
transmitting antennas and Q = 3 receiving antennas. The distance between two adjacent receiving antennas is 0.03m,
i.e., drx = 0.03m. The diameter of the target is 2R = 0.2m. The distance between the target and the receiver changes
from 0.3m to 5m. The material of the target is water, and the permittivity is given by empirical formula Kaatze. In
order to solve the scattered waves Es using the moment method, we discretized the space so that each subunit is a
square with a side length of 0.01m.

We estimate the mutual information using a numerical algorithm Haaga et al.. The results are shown in Fig. 11. The
results show that when the target is too close to the receiver, the accuracy of the direction estimation is very poor. We
believe this is because the existence of phenomena such as diffraction makes it difficult to use the ray tracing model (the
basic assumption of the MUSIC algorithm) to equivalent signal transmission Shang et al. [2022]. When the distance
is too large, the accuracy will also decrease. We believe this is because the scattered wave signal becomes weaker,
resulting in a decrease in angular resolution. In addition, the changing trend of accuracy is basically consistent with the
changing trend of the error lower bound given by our DTMI, and their Pearson correlation coefficient exceeds 0.95.

(2) Device type identification based on traffic characteristics.

Security and privacy issues have always been a hot topic among researchers Han et al. [2022]. In recent years, with
the development of the Internet of Things (IoT) and WiFi technology, attackers have devised more diverse means to
steal private information. For instance, many attackers place concealed cameras and other IoT devices designed to
pilfer private information in public environments such as hotels. After acquiring this private information, these devices
continuously transmit the data through gateways. To detect illegal devices, Yan et al. Yan et al. [2022] leveraged the
characteristic that different devices generate distinct traffic patterns, using the traffic at the gateway for device type
identification. Their research findings indicated a minimum accuracy rate of 99.17% for identifying common devices
like various models of Xiaomi phones, routers, etc. In this paper, based on their open-source code and data, our analysis
shows that lossless detection can be achieved when the bit rate satisfies the sufficient condition given in Theorem 3.

At this moment, the schematic diagram illustrating the sensing channel encoder model is depicted in Fig. 12. Post-
processing of the traffic data, we employ the methodology put forth by Yan. Yan et al. [2022] and colleagues to derive a
30-dimensional signal intended for appliance classification. Our dataset encompasses traffic information from eleven
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Table 1: The code names for device types and their
actual names.

Device name Device type
XIAOMI Bedside Lamp A
HUAWEI TC5206 B
XIAOMI Induction Cooker C1, C2
HUAWEI Matebook D
XIAOMI Microwave Oven E1, E2
Oneplus6T F
XIAOMI Rice Cooker G1, G2
XIAOMI EPS H1, H2, H3
XIAOMI Table Lamp I1, I2
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Figure 13: Device type identification based on traffic charac-
teristics.

distinct device categories, whose precise nomenclature and coding are presented in Table 1. Notably, instances where
identical device names are associated with multiple codes signify the existence of several units of the same device
category. As an illustration, Type “C" comprises two devices, labeled “C1" and “C2", which denote two separate models
of Xiaomi induction stoves. The evaluation procedure incorporates a five-fold cross-validation strategy, alongside
adopting the KNN classifier as the analytical tool for discrimination. Throughout every iteration of cross-validation, the
signals hailing from the subset earmarked for training are denoted as Xn, whereas those belonging to the testing subset
are marked as Y n, precedented by applying algorithm “GaoOhViswanath" Gao et al. [b] to gauge mutual information.
Fig. 13 illustrates the results of our calculations. Here, the possible state number m = 9, and 30-dimensional features
are used for device type recognition. In this case, the corresponding sensing bitrate is R = logm/n. We find that the
data at this time satisfies the sufficient conditions given by Theorem 3, and the goal of non-destructive sensing can be
achieved at this time. The results of our KNN classification also show that the accuracy of device type recognition is
100%.

6 Conclusion

In this paper, we establish a channel model suitable for ubiquitous sensing, where we associate the sensing task with the
received channel embedding through discrete task mutual information. Compared to the sensing mutual information
in the integrated sensing and communication system, discrete task mutual information can more accurately evaluate
the performance of the sensing system. Unlike traditional communication channel models, in sensing channels, it is
difficult to maintain the independent and identically distributed characteristics among different random variables. For
discrete task sensing channels, we provide upper and lower bounds for the expected error of sensing based on discrete
task mutual information, and give a sufficient condition for achieving lossless sensing. We conduct case studies on
four common sensing applications based on experimental data and simulation data. The results show that discrete task
mutual information has a strong similarity with sensing accuracy. This provides a theoretical evaluation method for the
performance of integrated sensing and communication systems beyond experimental evaluation.
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