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Delineation Using COTS WiFi Devices

DAWEI YAN, University of Science and Technology of China, China
PANLONG YANG∗, Nanjing University of Information Science and Technology, China
FEI SHANG, University of Science and Technology of China, China
WEIWEI JIANG, Nanjing University of Information Science and Technology, China
XIANG-YANG LI, University of Science and Technology of China, Deqing Alpha Innovation Institute, China

WiFi has gradually developed into one of the main candidate technologies for indoor environment sensing. In this paper,
we are interested in using COTS WiFi devices to identify material details, including location, material type, and shape, of
stationary objects in the surrounding environment, which may open up new opportunities for many applications. Specifically,
we presentWi-Painter, a model-driven system that can accurately detects smooth-surfaced material types and their edges
using COTS WiFi devices without modification. Different from previous arts for material identification,Wi-Painter subdivides
the target into individual 2D pixels, and simultaneously forms a 2D image based on identifying the material type of each pixel.
The key idea ofWi-Painter is to exploit the complex permittivity of the object surface which can be estimated by the different
reflectivity of signals with different polarization directions. In particular, we construct the multi-incident angle model to
characterize the material, using only the power ratios of the vertically and horizontally polarized signals measured at several
different incident angles, which avoids the use of inaccurate WiFi signal phases. We implement and evaluateWi-Painter in
the real world, showing an average classification accuracy of 93.4% for different material types including metal, wood, rubber
and plastic of different sizes and thicknesses, and across different environments. In addition, Wi-Painter can accurately detect
the material type and edge of the word "LOVE" spliced with different materials, with an average size of 60𝑐𝑚 × 80𝑐𝑚, and
material edges with different orientations.
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Fig. 1. In real scenarios, an object may consist of multiple different materials, and identification of material details may
open up new opportunities for many applications.Wi-Painter utilizes COTS WiFi devices with horizontally and vertically
polarized signals to achieve fine-grained material identification, further enabling image delineation.
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Fig. 2. Limitations of material identification based on scattering and frequency features: (a) More quasi-specular (bottom) rather
than diffuse (top) at low frequency, resulting in less backscattering features, where 𝑅𝑎 is the surface roughness, and 𝑠𝑖 , 𝑠 𝑗 are
the scattering signals. (b) The complex permittivities of solid materials vary little with frequency in the GHz band.

1 INTRODUCTION
Motivation. Due to its ubiquity and low cost, WiFi is developing as a prime candidate for indoor environmental
sensing. In recent years, WiFi signals have been used for people tracking [25, 32, 42, 59, 60], health monitoring [34,
36, 50, 68], object imaging [20, 31, 39, 41], and material identification [15, 43, 56, 66]. In general, identifying
materials for objects in environments is important for many applications. For example, identifying the material
of a metal surface can tell user whether it is corroded [26], or the soil type can be judged by measuring the water
content [10, 24]. Fine-grained liquid detection can identify fake perfume and wine [17, 21]. If the robot or drone
can detect the material of surrounding objects [66], this can be used for search and rescue, parking assistance and
etc.While cameras can identify materials, it cannot do so under non line of sight (NLoS) and requires highlights,
and more importantly, cannot differentiate between similar-looking materials. Therefore, if we can identify details
of materials using commercial-off-the-shelf (COTS) WiFi devices, it can open up new opportunities for many
applications.

Prior arts and their limitations. From previous work, it is feasible to use reflected or transmitted RF signals for
material identification, which can be achieved by extracting rich scattering features related to materials [55, 66,
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69]. These material identification systems treat each object as a separate entity, and the accuracy of material
identification based on feature extraction decreases as the surface area of the object decreases. However, in the
real environment, many objects may be close together (e.g. , books and metal ornaments placed on a bookshelf),
or an object is composed of many different materials (e.g. , table with wooden planks above and metal below),
as shown in Fig. 1. While there are some RF imaging systems, the boundaries of these objects cannot be well
demarcated when the materials are similar. In addition, since WiFi signal wavelengths greater than the roughness
of the object surface, quasi-specular reflections occur instead of informative diffuse reflections [39], as shown in
Fig. 2a. This makes schemes based on scattering features unsuitable for distinguishing similarly smooth-surfaced
materials.
There are also some works utilizing the complex permittivity to identify materials, since different materials

exhibit different complex permittivities [44, 45, 48]. Theseworks use the relationship between complex permittivity
and frequency to construct features that can identify materials, but the accuracy is affected by the bandwidth,
and the performance is poor when using COTS WiFi devices. What’s more, as shown in Fig. 2b, the complex
permittivity of many solids varies very little with frequency, which makes the scheme of constructing features
based on frequency failed. Therefore, material identification details using COTSWiFi devices remains a challenging
problem.
Key idea. An important observation is that after incident waves with different polarization directions are

reflected by the object, the reflectivity of the object is different, which is related to the complex permittivity.
Therefore, by exploiting the different reflectivity of the object for signals with different polarization directions,
we can directly estimate the complex permittivity of the object surface to identify different materials. In this
way, there is no need for rich scattering features on the surface of the object, and this can be achieved using
COTS WiFi devices without modification (e.g. , 5𝐺𝐻𝑧/40𝑀𝐻𝑧). We further subdivide the reflected surface into
many small reflected areas and measure the complex permittivity of each reflected area individually, thereby
distinguishing the edges of different materials.

Challenges. Although the polarimetry has been widely used in the remote sensing literature [29], generalizing
it to COTS WiFi signals for fine-grained measurement of the complex permittivity still faces the following
challenges:

• How to fine-grained estimate the complex permittivity of material when WiFi signal phase measurement is
inaccurate? Estimating the complex permittivity using polarization methods usually requires accurate
measurement of the amplitude and the phase of the reflected signal from the material. However, the
acquisition of signal phase is affected by many factors, such as sampling frequency offset (SFO), time of
fight (ToF) and etc., resulting in large error of the estimated complex permittivity using the amplitude and
phase. So how to fine-grainedly estimate the complex permittivity of material using only the accurate
signal amplitude?

• How to use COTS WiFi to mark reflected areas with centimeter-level accuracy? Before analyzing the properties
of the material, it is necessary to separate the signals reflected from of each material in space, and mark the
same reflected area with centimeter-level accuracy. Since we use reflected signals, we cannot traditionally
use multiple angle of arrival (AoA) or propagation distances to achieve precise localization, and the WiFi
bandwidth is not enough to support us to directly use ToF to separate multipath signals. So how to accurately
obtain these parameters from WiFi signals undergoing multipath propagation?

• How to remove the influences of other items related to materials and edges detection accuracy? An object may
be composed of several different materials and have their sizes. When the reflected area is located at the
junction of two different materials, or there is a large error in the reflection path parameter estimation in
some reflected areas, these lead to material identification errors or position marking errors, which will
affect edge detection. So how to effectively deal with these problems?
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Our methods. To address the above challenges, we presentWi-Painter, a scheme for fine-grained measurements
of materials and edges of unknown objects’ surfaces in the environment based on orthogonally polarized WiFi
signals.
(i) Firstly, to solve the problem of accurately estimating the complex permittivity using only the amplitude

of WiFi signals in orthogonally polarized channels, we establishe the multi-incident angle model. We observe
that the reflectance varies depending on the incident angle of the signal reaching the surface. Therefore, we
measure the power ratio of the orthogonally polarized signals at different incident angles, and traverse the phase
difference in the range of [0, 2𝜋] to establish the relationship between the real part and the imaginary part of
the complex permittivity, and these relationships will tend to a certain point , which is the value of the complex
permittivity.
(ii) Secondly, based on the multipath model represented by the parameters of angle of departure (AoD), AoA,

attenuation, and path delay, the parameters of each path are preliminarily estimated. We then build the equal-
complementary angle model using geometric principle, to achieve centimeter-level marking of reflected areas.
Specifically, we consider that within a reflected area of the material, its relative orientation to the WiFi transceiver
is equal to half the sum of the measured AoD and AoA. We establish constraints by moving the transceiver or the
object material (moving window equal to the reflected region) to enhance the multipath separation, get the power
ratio of the orthogonally polarized signals of each reflection path, and use the refined parameters to calculate the
position and orientation of each reflected area.
(iii) Thirdly, aiming at fine-grained identification of different materials and edges, we extend the reflected

area to 2D, refer to the idea of polarimetric synthetic aperture rada (PolSAR) imaging, take the orthogonally
polarized signals of multiple incident angles as image pixels, and then calculate the coordinates of each pixel
and its material type. In order to deal with the strong speckle in the image, we build Gaussian shaped filter to
judge whether it is an edge or not according to the difference between the two sides of the central pixel, and fit
successive edge pixels of the same material to outline the accurate material edge.
Contributions. Overall, the main contributions of this paper are as follows:
• We proposeWi-Painter, to the best of our knowledge, the first model-driven attempt to perform fine-grained
identification of not only materials but also edges using COTS WiFi devices. The advantage of Wi-Painter
is that the smooth-surfaced material types and their edges can be detect accurately without the prior data
of the target materials and without the need for the WiFi transceiver to perform high-bandwidth scans.

• We construct multi-incident angle model, only measure several power ratios of orthogonally polarized
signals at different incident angles to characterize the material of the reflected area. We build equal-
complementary angle model and establish constraints to enhance multipath separation, and use refinement
parameters to obtain the location of each reflected area and the power ratio of the orthogonally polarized
signals. We also bulid Gaussian shaped filter and fit successive reflected areas of the same material to
improve accuracy.

• We implement Wi-Painter based on four WiFi network interface cards (NICs) IWL5300 with independent
vertically polarized and horizontally polarized antennas, and move the transceiver or target materials to
construct antenna grids. We test our proposed models and techniques in real world, for different material
types, sizes, thicknesses, and environments, achieving an average classification accuracy of 93.4%. In
addition,Wi-Painter can accurately detect the material types and edges of the word "LOVE" spliced with
different materials.

The rest of this paper is organized as follows: Section 2 presents some preliminaries of the polarized electro-
magnetic waves, the basic method of estimating the object surface’s complex permittivity using the orthogonally
polarized signals and the basic Principles of PolSAR Imaging. We show the overview of Wi-Painter in Section 3.
In Section 4, Section 5 and Section 6, we describe the proposed model and techniques for fine-grained estimation
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of object materials and their edges in details. Implementation and evaluation are presented in Section 7 and
Section 8. We discuss more about the performance and limitations ofWi-Painter in Section 9. Section 10 discusses
the related works. We finally conclude our work in Section 11.

(a) (b) (c)

Fig. 3. Propagation of polarized electromagnetic plane waves: (a) elliptical polarization, (b) linear polarization, (c) circular
polarization.

2 PRELIMINARIES

2.1 Propagation and Reflection of Polarized Electromagnetic Waves
The electric and magnetic fields of an electromagnetic plane wave are perpendicular to each other and to the
direction of propagation. The complex electric field of an electromagnetic plane wave propagating along the 𝑧
direction can be expressed as [5]:

®̂𝐸 (𝑧) = 𝑎𝑥𝐸𝑥 (𝑧) + 𝑎𝑦𝐸𝑦 (𝑧)

= 𝑎𝑥𝐸𝑥𝑒
− 𝑗 (𝜅𝑧−𝛼𝑥 ) + 𝑎𝑦𝐸𝑦𝑒

− 𝑗 (𝜅𝑧−𝛼𝑦)
(1)

where 𝑎𝑥 and 𝑎𝑦 are the complex amplitudes, 𝐸𝑥 (𝑧) and 𝐸𝑦 (𝑧) are the electric field components in the 𝑥 and 𝑦
directions, 𝛼𝑥 and 𝛼𝑦 are the angles between the two electric field components and 𝑥 and 𝑦 directions, 𝜅 is a
parameter. In general, the polarization direction of electromagnetic wave refers to the polarization direction of
the electric field [52]. Fig. 3 shows the three polarization modes of electromagnetic waves. If the electric field
oscillates in only one direction, it is linearly polarized [5, 22], as shown in Fig. 3b. The most common linear
polarizations are horizontal polarization (𝛼𝑦 = 0◦) and vertical polarization (𝛼𝑥 = 0◦), as shown in Fig. 4 (left).
Considering a linearly polarized electromagnetic plane wave, different reflections and transmissions will

occur when it propagates from air to other medium [16]. As shown in Fig. 4 (right), the 𝑥-axis is the interface,
the 𝑥𝑜𝑧 plane is the incident plane, 𝛼 is the incident angle. 𝐼 ∥ and 𝐼⊥ are the electric field components of the
incident waves parallel and perpendicular to the incident plane, and 𝑅∥ and 𝑅⊥ are the electric field components
of the reflected waves parallel and perpendicular to the incident plane, respectively. It is worth noting that the
components of the reflected wave differ due to the complex permittivity, and different materials have different
complex permittivities [40, 44, 45, 48], which is the physical principle behind using complex permittivity to
identify different materials.
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Fig. 4. Propagation (left) and reflection (right) of linearly po-
larized electromagnetic waves.
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Fig. 5. Polarimetric synthetic aperture radar imaging.

2.2 Polarimetry for Determining the Complex Permittivity
The reflection coefficient can be expressed as the amplitude ratio of the reflected wave to the incident wave [16].
Assuming that the linearly polarized electromagnetic plane waves parallel and perpendicular to the incident
surface are obliquely incident from the air to the medium, we can obtain the Fresnel reflection coefficients as
following [2, 35]:

ℜℎ𝑝 =
cos𝛼 −

√
𝜀 − sin2 𝛼

cos𝛼 +
√
𝜀 − sin2 𝛼

, (2)

ℜ𝑣𝑝 = −𝜀 cos𝛼 −
√
𝜀 − sin2 𝛼

𝜀 cos𝛼 +
√
𝜀 − sin2 𝛼

, (3)

whereℜℎ𝑝 andℜ𝑣𝑝 are the reflection coefficients for horizontal and vertical polarization, and 𝜀 is the complex
permittivity. However, it is difficult to directly measure the reflection coefficient of an unknown medium, and
usually the amplitude and phase of the signal can be obtained. Furthermore, taking the ratio of the two reflection
coefficients obtained by the orthogonal polarization as:

P =
ℜ𝑣𝑝

ℜℎ𝑝

= |P |𝑒 𝑗Ψ . (4)

Obviously P is a complex number, that is, it not only depends on the power ratio of the signal, but also depends on
the phase difference of the receiver orthogonally polarized signal. Then, we can get the complex permittivity [35]:

𝜀 =

[
1 + 4P

(1 − P)2
sin2 𝛼

]
tan2 𝛼. (5)

In theory, the above method can measure the complex permittivity very accurately, so as to identify the material
well. However, there are still many problems in using WiFi signals to achieve fine-grained material recognition,
which we explain in Section 4.

2.3 Polarimetric Synthetic Aperture Radar Imaging
PolSAR has been widely used in the fields of object classification, environmental monitoring, and target detec-
tion [12, 18, 29]. As shown in Fig. 5, PolSAR obtains the polarization scattering matrix of the target by transmitting
and receiving electromagnetic waves with different polarization directions, and then studies the polarization
scattering characteristics of different objects [8, 38]. At present, PolSAR is divided into polarization systems such
as single polarization, dual polarization, and full polarization.
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Fig. 6. System overview: Wi-Painter takes as input the CSI measurements of the receiver during movement of the WiFi
transceiver and derives various positions, materials and edges of the target area.

In the PolSAR imaging system, the polarization scattering matrix S is a convenient way to represent the
scattering characteristics of a single pixel, which contains all the polarization information of the target [61].
Vectorizing S to obtain the normalized covariance matrix C [6, 7, 27]:

⟨C⟩ =
〈
kk†

〉
, (6)

k =
1
√
2
[𝑆HH + 𝑆VV, 𝑆HH − 𝑆VV, 2𝑆HV]𝑇 , (7)

where 𝑆𝑉𝑉 , 𝑆𝐻𝑉 and 𝑆𝐻𝐻 correspond to the information when the transmission and reception are vertical
polarization and horizontal polarization respectively, and k and k† are the polarized scattering vector using
the Pauli bases and its conjugate transpose. The PolSAR imaging is generally performed on C. Specifically,
decomposing C into eigenvectors to obtain several parameters (polarization entropy, anisotropy, Wishart distance
and etc.), applying some models to classify and edge detect PolSAR image pixels, and finally form 2-D PolSAR
images [11, 14, 19, 28, 47]. In this paper, we utilize the principle similar to PolSAR imaging to identify the edges
of different materials based on COTS WiFi devices, but we do not use matrix C to achieve this.

3 OVERVIEW

3.1 Problem Statement
As shown in Fig. 6, the goal ofWi-Painter is to allow orthogonally polarized (e.g. , horizontally and vertically
polarized) commercial WiFi signals (e.g. , 5𝐺𝐻𝑧/40𝑀𝐻𝑧) to detect the location, materials and edges of the
surrounding smooth-surfaced object, which typically include but not limited to desk, refrigerator, sheet metal,
and wall. Note that in our research, we construct object-specific features based on quasi-specular signals at
multiple incident angles, where quasi-specular occurs when the signal wavelength is larger than the object
surface roughness [3, 39, 54]. To this end, we need to move the WiFi transceiver to build different WiFi rays
for ensuring that object in space can be scanned from different angles. Specifically, Wi-Painter takes channel

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 203. Publication date: December 2023.



203:8 • Dawei et al.

state information (CSI) measurements from the receiver during movement of WiFi transceiver as input, and then
derive the object’s location, materials, and edges.

3.2 Wi-Painter’s Architecture
In this paper, the positions and orientations of the transmitting and receiving antennas are precisely known, and
these antennas are basically at the same height. This makes each WiFi ray horizontal, which is feasible since our
scheme generalizes easily from low to high dimensions.
Material localization and reflected power extraction (§5).We represent the multipath channel by parameters

such as AoD, AoA, the attenuation, and path delay for each path, and iteratively estimate these parameters of
each mirror point by following the approach of mD-track [59]. Then we move the transceiver to refine the path
parameters for achieving centimeter-level localization accuracy and extract accurate reflected power. After this
process, several mirror points are combined into a reflected region.
Basic model for material identification and edge detection (§4).We measure the power ratios of orthogonally

polarized signals at multiple incident angles, which can identify different materials without frequency-dependent
features. After this process, a plurality of adjacent reflective regions under different incident angles are combined
into an image pixel. Then we measure multiple image pixels in 2D and identify their materials, and detect edges
based on material identification, thus forming a 2D image.
Material edge refinement and strong speckle removal (§6). we build Gaussian shaped filter to judge whether it

is an edge or not according to the difference between the two sides of the central pixel, and fit successive edge
pixels of the same material to outline the accurate material edge.

4 BASIC MODEL FOR MATERIAL IDENTIFICATION AND EDGE DETECTION
In this section, we introduce our basic model for fine-grained material identification and edge detection based on
orthogonally polarized commercial WiFi signals.

4.1 Estimation of the Complex Permittivity from Power Ratio for Different Incident Angles
We first briefly introduce how the traditional amplitude-phase based polarimetry method estimates the complex
permittivity of the object surface. Then, we illustrate the problem of the phase imprecision of COTS WiFi devices,
and verify the fact that materials can be characterized using only the power ratio of orthogonally polarized
signals at multiple incident angles.
Applying Euler’s formula 𝑒 𝑗Ψ = cosΨ + 𝑗 sinΨ into Equ. 5, the real and imaginary parts of the complex

permittivity can be obtained as follows:

Re 𝜀 =
[
1 + 4|P |

(
1 + |P|2

)
cosΨ − 2|P |

(1 − 2|P | cosΨ + |P|2)2
sin2 𝛼

]
tan2 𝛼,

Im 𝜀 = 4|P |
(
1 − |P|2

)
sinΨ

(1 − 2|P | cosΨ + |P|2)2
sin2 𝛼 tan2 𝛼,

(8)

where |P | and Ψ are the power ratio and phase difference of the vertically polarized and horizontally polarized
signals reflected by the object material, and 𝛼 is the incident angle. In this way, given that the incident angle
𝛼 is known, we can transmit vertically polarized and horizontally polarized WiFi signals of equal power, and
receive them at the receiving end using vertically polarized and horizontally polarized antennas, respectively.
Then the power ratio and phase difference of the orthogonally polarized channels can be obtained to get the
complex permittivity of the material.
However, the phase difference of the orthogonally polarized channels is difficult to obtain accurately, mainly

because the phase error introduced by SFO and ToF inWiFi NIC [58, 62], and the propagation path of orthogonally
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Fig. 9. We construct the Tx antenna grid and the Rx antenna grid around the target material, and when Tx and Rx are at
certain position (𝑃𝑘𝑡 , 𝑃𝑘𝑟 ), the condition of certain incident angle 𝛼𝑘 to certain mirror point 𝑘 can be formed.

polarized signals cannot be guaranteed to be consistent. This leads to a large error in the complex permittivity
determined based on the power-phase method. On the other hand, the power ratio can generally be obtained
accurately, but the complex permittivity cannot be measured only from the power ratio. Our observation is
that the real part Re 𝜀 and imaginary part Im 𝜀 of the complex permittivity is also closely related to the incident
angle 𝛼 , as described in Equ. 8. So can we get the complex permittivity of the material through the power ratio
{|P1 |, |P2 |, · · · , |P𝑘 |} at different incident angles {𝛼1, 𝛼2, · · · , 𝛼𝑘 }?
In order to verify this, we obtain the power ratios of four different materials when the incident angles are

[10 ◦, 60 ◦] with interval is 10 ◦ based on simulation data. Then, for each incident angle’s power ratio (𝛼𝑘 , |P𝑘 |),
we traverse the phase difference in the range [0, 360 ◦] to calculate the real part Re 𝜀 (Ψ) and imaginary part
Im 𝜀 (Ψ) of the complex permittivity according to Equ. 8, where Ψ is the phase difference. Finally, for the set
{· · · , (Re 𝜀 (Ψ𝑖 ), Im 𝜀 (Ψ𝑖 )), · · · , (Re 𝜀 (Ψ𝑗 ), Im 𝜀 (Ψ𝑗 )), · · · } under each power ratio |P𝑘 |, we can fit a closed curve,
so multiple sets obtained under multiple power ratios fit several curves, as shown in Fig. 7. Obviously, the several
curves fitted by one object approximates to one point, which corresponds to the complex permittivity 𝜀 of the
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Fig. 10. We scan each mirror point on 2D and identify the material type according to the extracted orthogonal polarization
signal ratio of multiple incident angles, and then characterize the edges of different materials based on the material
identification.

object. Therefore, the complex permittivity of the object can be accurately measured based on the power ratio at
different incident angles.
Furthermore, in many scenarios (e.g. , narrow aisles and corners) we may not be able to obtain power ratios

in the range [0, 90 ◦], so it is not always possible to fit the complex permittivity. However, the power ratios
of different materials at different angles of incident are always different. Therefore, for the convenience of
calculation, we only use (𝛼𝑘 , |P𝑘 |) as the feature representing the complex permittivity of the object material:

g =
[
|P1 |, |P2 |, · · · , |P𝑀 |

]
, (9)

where𝑀 is the number of incident angles. As shown in Fig. 8, we perform multiple simulations, and the results
show that the power ratios of orthogonally polarized signals by different materials are different at some incident
angles. So far, we have built a material feature that only depends on the power ratios and incident angles, which
is stable for commercial WiFi devices.

4.2 Obtaining Power Ratios for a Wide Range of Incident Angles
There are two important prerequisites for characterizing materials using the power ratio of orthogonally polarized
signals at multiple incident angles. The first premise is that the range of incident angles needs to be wide enough.
Note that there is little difference in the power ratios of the orthogonally polarized signals reflected by different
materials at small incident angles, while the difference may be more pronounced at larger incident angles, as
shown in Fig. 8. The second premise is that the orthogonally polarized signal must be reflected by the material at
the same position. This is especially critical in our system, where we require signals at different incident angles
to be reflected by quasi-specular reflected mirror points.

In order to satisfy these two premises, our method is to construct the Tx antenna grid and the Rx antenna grid
around the object material, as shown in Fig. 9, the positions (P𝑡 , P𝑟 ) of the transceiver are known in our system.
We then estimate the position (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ) and orientation 𝜃𝑘 of reflected mirror point, and obtain the incident
angle 𝛼𝑘 and reflected power ratio |P𝑘 | of orthogonally polarized signals. The detailed process is described in
Section 5.

4.3 Edge Detection Based on Material Identification
In order to detect the edges of different materials, we abstract the target object into a 2D image composed
of multiple mirror points. Then we construct Tx grid and Rx grid around each mirror point to calculate the
orthogonal polarization power ratios under several incident angles, and use these power ratios to estimate the
material corresponding to the mirror point (𝑥,𝑦). As shown in Fig. 10, a 2D image should be formed in the end,
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where different colors represent different material types. Then, we can draw the edges of different materials on
the basis of material identification, as shown in the black line in Fig. 10.

However, there are two problems with edge detection based on material identification, as shown in Fig. 12. The
first is that the power ratio of the orthogonally polarized signals acquired at the edge of the material does not
belong to any material on both sides, or the power ratio calculation error is large in the same material, which leads
to material identification errors. We call this phenomenon is strong speckle. The other is that the mirror point
reflected by WiFi signal is actually an area of about half a wavelength, and the estimation error of the position of
the mirror point may be large, which leads to inaccurate outline of the edges. We give specific solutions for these
two problems in Section 6.

5 MATERIAL LOCALIZATION AND REFLECTED POWER EXTRACTION
It can be known from Section 4 that fine-grained material identification and edge detection require accurate
acquisition of four parameters: the coordinate (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ) and orientation 𝜃𝑘 of each mirror point, the incident
angle 𝛼𝑘 and reflected power ratio |P𝑘 | of orthogonally polarized signals. In this section, we then present our
scheme to accurately obtain these parameters based only on the locations of theWiFi transceiver and the measured
CSIs.
Assuming that the positions of the transceiver in space are known to be (𝑥𝑘𝑡 , 𝑦𝑘𝑡 , 𝑧𝑘𝑡 ) and (𝑥𝑘𝑟 , 𝑦𝑘𝑟 , 𝑧𝑘𝑟 ) when

Tx and Rx are in positions 𝑃𝑘𝑡 and 𝑃𝑘𝑟 , as shown in Fig. 9. Note that when moving the transceiver or the object
material to construct Tx grid and Rx grid, we always keep the Tx and Rx at the same height. Although Tx and
Rx are not set at the same height to construct the two complete antenna grids, setting them at the same height
makes the system easier to deploy, and this will not affect the normal operation of the model in Section 4. Next,
we take Tx and Rx at height 𝑦𝑘𝑡 = 𝑦𝑘𝑟 = 𝑦𝑘 as the example to illustrate the details of our scheme.

5.1 Basic Model of Separating Signal Paths
Considering that surfaces appear quasi-specular at lower frequencies such as WiFi [39], we are actually measuring
each mirror point. In this paper, we use a method similar to mD-track [59] to obtain the signal reflected from the
mirror point. For a multipath channel, each path is represented by the AoD 𝜑 , the AoA Φ, the attenuation 𝛾 and
the path delay 𝜏 . The multipath channel can be expressed as:

H =

𝐿∑︁
𝑙=1

𝐻 (𝜑𝑙 ,Φ𝑙 , 𝛾𝑙 , 𝜏𝑙 ) +𝑊, (10)

where𝑊 is the Gaussian noise matrix.
To get the locations and orientations of multiple mirror points, we need to extract the path parameters of the

reflection path from the multipath channel. We follow the approach of mD-track [59] to achieve this. Specifically,
we first reconstruct the strongest path and its parameters, then we subtract it to get the channel residual for
iterative estimation of path parameters, which can isolate weaker reflection paths [4]. We get the path parameters:

(𝜑, Φ̂, 𝜏) = argmax
𝜑,Φ,𝛾,𝜏

|𝑧 (𝜑,Φ, 𝜏) | , (11)

𝛾 =

𝑧

(
𝜑, Φ̂, 𝜏

)
𝑁𝑎𝑛𝑡 ·𝑇𝑠

, (12)

where 𝑧 (𝜑,Φ, 𝜏) is a multidimensional estimator designed to maximize the power of the received channel over a
set of possible path parameters, 𝑁𝑎𝑛𝑡 is the number of total antennas and 𝑇𝑠 is the signal duration.
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Fig. 11. The position of each mirror point of the target material is estimated based on the multipath model, and the multipath
parameters are refined using several consecutive mirror points (a reflected region).

It should be specially stated that although the algorithm of mD-Track for estimating path parameters also needs
to use the phase information of multiple antennas, it is different from the phase used by the traditional amplitude-
phase method using orthogonally polarized signals to estimate the complex permittivity of material. Specifically,
mD-Track estimates parameters such as AoA and attenuation by using multi-antenna phase differences, and
removes additional phase errors introduced by SFO through methods such as conjugate multiplication. However,
the traditional magnitude-phase method needs to directly use the precise absolute phase measurements of two
different polarization directions, and requires that the reflected electromagnetic waves of the two different
polarization directions come from the same propagation path. Therefore, compared with the latter, the phase
information of WiFi signals with two different polarization directions is enough to estimate the path parameters
respectively.

5.2 Estimation of Mirror Points’ Parameters Based on Multipath Channel
Traditionally, based on the iterated path parameters and the geometric principle of quasi-specular reflection, we
get the orientation 𝜃𝑘 and incident angle 𝛼𝑘 of the mirror point at (𝑃𝑘𝑡 , 𝑃𝑘𝑟 ) as follows:

𝛼𝑘 =
𝜑𝑘 − Φ̂𝑘

2 , (13)

𝜃𝑘 = 𝜃𝑘𝑡𝑟_𝑚𝑝 + 𝜃𝑘𝑡𝑥_𝑟𝑥 =
𝜑𝑘 + Φ̂𝑘

2 + arctan
𝑧𝑘𝑟 − 𝑧𝑘𝑡

𝑥𝑘𝑟 − 𝑥𝑘𝑡
, (14)

where 𝜃𝑘𝑡𝑟_𝑚𝑝 is the relative angle between the mirror point and the transceiver, and 𝜃𝑘𝑡𝑥_𝑟𝑥 is the orientation of
the transceiver, as shown in Fig. 11. And the power ratio of orthogonally polarized signals is:

|P̂𝑘 | =
|𝛾𝑘𝑣𝑝 |2

|𝛾𝑘
ℎ𝑝
|2
, (15)
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where 𝛾𝑣𝑝 and 𝛾ℎ𝑝 represent the attenuation factors of vertical polarization and horizontal polarization signal
propagation respectively, and they are different because of the existence of the complex permittivity, as described
in Section 2.

Although we assume that the resolution of 𝜏 can distinguish signals from different paths in this paper (e.g. , at
80MHz bandwidth, paths with a difference of 3.75m can be distinguished), there are still large fluctuations in
the estimated value of 𝜏 . Therefore, we only use the estimated AoA and AoD (i.e. , 𝜑 and Φ) to locate the mirror
point. Specifically, we first estimate AoA and AoD separately, and then use triangulation method to estimate the
position of the mirror point.

5.3 Parameters Refinement of the Image Pixel in Mobile Settings
In particular, to improve accuracy of edge detection, we need to accurately estimate each mirror point’s position
(centimeter level or even better), orientation, incident angle, and power ratio. To achieve this, we build the
equal-complementary angle model by moving the transceivers or the object material to take advantage of the
geometry, thereby enhancing multipath separation. Considering some potential scenarios such as assembly line
testing of material quality in automated factories and airport security checks, such settings are reasonable. As
shown in Fig. 11, we observe that according to the principle of specular reflection, when the transceiver or the
object material is moved along a straight line for a small distance 𝑠 (e.g. , 2 cm), the mirror point moves a distance
of 𝐿. We consider that within this distance, the orientation of the reflector remains unchanged. According to the
geometric relationship between AoA and AoD (𝜑𝑖 + Φ̂𝑖 = 𝜑𝑖+1 + Φ̂𝑖+1, 𝑖 = 1, 2, · · · ), we can get angles (𝜑 ′𝑘 , Φ̂′𝑘 ) of
the reflection region as follows:

(𝜑 ′𝑘 , Φ̂′𝑘 ) = 1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1

argmin
𝜑̂𝑘 ,Φ̂𝑘

| | (𝜑𝑘
𝑖 + Φ̂𝑘

𝑖 ) − (𝜑𝑘
𝑗 + Φ̂𝑘

𝑗 ) | |2, (16)

where 𝑁𝑘 is the number of mirror points measured by the transceiver. Then we put (𝜑 ′𝑘 , Φ̂′𝑘 ) into Equ. 13 and
Equ. 14 to obtain 𝜃 ′

𝑘 . And the ToF 𝜏 ′𝑘 is:

𝜏 ′
𝑘
=
𝑑𝑘 (sec𝜑 ′𝑘 + sec Φ̂′𝑘 )

𝑐
=
𝑑𝑘𝑟𝑡 (sec𝜑 ′𝑘 + sec Φ̂′𝑘 )

(tan𝜑 ′𝑘 − tan Φ̂′𝑘 ) · 𝑐
, (17)

where 𝑑𝑘𝑟𝑡 is the distance from Tx to Rx and 𝑐 is the speed of light. Then we put (𝜑 ′𝑘 , Φ̂′𝑘 , 𝜏 ′
𝑘 ) into Equ. 12

and Equ. 15 to obtain |P̂′𝑘 |. It is worth noting that several mirror points of orthogonally polarized signals are
combined into a reflected region, and multiple reflected regions with different incident angles form an image
pixel, and the image pixel center is the centroid of these reflected regions.

6 MATERIAL EDGE REFINEMENT AND STRONG SPECKLE REMOVAL

6.1 Gaussian Shaped Filter to Remove Strong Speckle
Some strong speckle in the image may reduce the detection accuracy of materials and edges, as shown in Fig. 12.
We build the Gaussian shaped filter and apply it to all image pixels to handle this problem, and get the weight of
the pixel (𝑥,𝑦):

𝑊 (𝑥,𝑦) = 1
√
2𝜋𝜎𝑥

√
2𝜋𝜎𝑦

exp
(
−

(
𝑥2

2𝜎2
𝑥

+ 𝑦2

2𝜎2
𝑦

))
, (18)
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Fig. 12. We use Gaussian shaped filter to remove strong speckle in 2D image constructed based on material identification,
and then fit the predicted image edges to outline smooth and accurate real material edges.

where 𝜎𝑥 and 𝜎𝑦 are the dimensions of the filter window. We determine the most material types 𝑇1,𝑇2 on both
sides, and define the pixels on both sides as follows:

𝐶 (𝑥,𝑦) =


0, 𝑇 (𝑥,𝑦) = 𝑇1 = 𝑇2

1, 𝑇 (𝑥,𝑦) ≠ 𝑇1 ≠ 𝑇2,

2, 𝑇 (𝑥,𝑦) = 𝑇1 ≠ 𝑇2 .

(19)

Then we get the local weighted function on both sides of the center pixel respectively:

Z =

∑
(𝑥,𝑦)𝑊 (𝑥,𝑦)𝐶 (𝑥,𝑦)∑

(𝑥,𝑦)𝑊 (𝑥,𝑦) . (20)

Obviously, in this process, the closer to the image pixel center, the higher the weight. Therefore, based on the
Gaussian shaped filter, we can obtain the more accurate difference matrix on both sides of the center pixel.
Next, we compute the sum of the differences on either side of the center pixel:

𝐷 (Z1,Z2) = | |Z1 | | + | |Z2 | |. (21)

Furthermore, we compute Gaussian weight𝑊 (𝑥,𝑦) and the difference matrix 𝑍 for different orientation Θ, and
take its maximum value and corresponding orientation:

𝐷𝑚𝑎𝑥 = max 𝐷 (Z1,Z2,Θ)
Θ𝑚𝑎𝑥 = argmax

Θ
𝐷 (Z1,Z2,Θ) . (22)

By comparing 𝐷𝑚𝑎𝑥 with our preset threshold 𝐷𝑡ℎ𝑟𝑒 , it is judged whether the central pixel is an edge pixel. Finally,
we set the discriminated central pixel as the most material type on both sides, and repeat the above process for
all pixels. Note that in this paper, we set the window size to ( 3

2
√
𝜋
, 5
2
√
𝜋
), and set 𝐷𝑡ℎ𝑟𝑒 = 1.2, these are experience

values.

6.2 Curve Fitting to Refine Material Edges
Estimating mirror point locations using WiFi signals may result in inaccurate edge contours, as shown in the
predicted image edges in Fig. 12. In order to improve the edge detection accuracy of different materials, on the
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basis of removing strong speckle based on Gaussian shaped filter, we fit successive edge pixels of the same
material to outline smooth and accurate material edges, as shown in the real edges of materials in Fig. 12. In
particular, the edges of different materials in our deployment are linear, so we use the linear fitting method in this
paper. Please note that this paper does not discuss too much about the method of material edge fitting, which can
be one of future work.
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Fig. 13. Experimental implementation: (a) Design of orthogonal polarization antenna array for Tx and Rx. (b) Radiation pattern
of omnidirectional antenna. (c) Effect of directivity on received power.

No1 - 6 No7 No8

Fig. 14. Boards with different materials (No1 - 8: particle, rubber, plastic, iron, titanium, steel, solid wood, aluminum), different
sizes (solid wood: 40 × 20𝑐𝑚, 40 × 60𝑐𝑚, 40 × 120𝑐𝑚; aluminum: 20 × 20𝑐𝑚, 30 × 30𝑐𝑚, 40 × 40𝑐𝑚) and different thicknesses
(rubber: 15mm; 30mm, aluminum: 3mm, 2mm, 1mm).

7 PLATFORM IMPLEMENTATION
Hardware implementation. As shown in Fig. 13a, we buildWi-Painter based on four industrial personal computers
(IPCs) with WiFi NICs IWL5300, and with Intel Core i7-5550U CPU and 8GB RAM, running on Ubuntu 14.04 LTS.
Two of them are used as Tx, and the others are used as Rx. Each NIC is connected to three antennas to deal with
multipath. In order to accurately measure the power ratio of orthogonal polarizing signal, we use 3 × 4 linear
polarization antennas with the same parameters to construct antenna arrays of vertical polarization (VP) and
horizontal polarization (HP). In each set of antenna arrays, the antenna separation is half-wavelength to more
accurately extract path parameters. In particular, the VP antenna and the HP antenna are set in the same vertical
direction, and the interval is slightly greater than a quarter of wave (avoiding the antenna interval is too close
to the electric field coupling, and the interval is too far to reduce the edge detection accuracy). Then we place
TX and RX on two easy-to-move small hand carts, as shown in Fig. 13b. In addition, we use electromagnetic
(EM) shielding LoS signals and reflected signals behind the antenna arrays because the estimated range of AoA
is [−90 ◦, 90 ◦]. For convenience, we place the materials on the slide rail and move them to detect the materials
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Fig. 15. Accuracy of object location and orientation: (a) Location accuracy of three different object materials. (b) Orientation
accuracy of three different object materials. (c) The impact of different incident angles on object location accuracy. (d) The
impact of different distances on object location accuracy.

and edges. Such setting is reasonable in scenarios such as automated factory assembly lines and airport security
checks.
Software and data collection. We install Linux 802.11 CSI Tool on each IPC and keep TX and RX work in the

injection and monitor mode separately to collect CSIs. We keep HP and VP signals work separately at 64 channel
(i.e. , 5.32𝐺𝐻𝑧/40𝑀𝐻𝑧) and 161 channel (i.e. , 5.805𝐺𝐻𝑧/40𝑀𝐻𝑧) to avoid interference from frequency overlap.
It is worth noting that work in different channels is feasible, because the complex permittivity of solid almost
does not change with frequency, as described in Section 1. In order to collect data under different incident angles
(e.g. , 10 ◦, 20 ◦, · · · ), we move TX and RX to the marked positions and orientations to achieve TX scan and RX
scan. Then, we move the slide rail at a specific distance (e.g. , 2 cm), collect CSIs from HP and VP channels, and
repeat this process under each incident angle and each height.

8 EVALUATION

8.1 Experimental Setup
We evaluate Wi-Painter’s performance in real world deployment. To this end, we deploy Wi-Painter in three
different scenarios, including outdoor and indoor environments, as shown in Fig. 13b and Fig. 13c. As shown
in Fig. 14, we place 16 boards in these scenarios to identify their materials, which contain 8 different kinds of
materials (particle, rubber, plastic, iron, titanium, steel, solid wood, aluminum) and the same kind of materials
with different sizes and different thicknesses. It is worth noting that the surfaces of titanium and steel look very
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similar. Then we combine several materials of different or same types into one object, and place the combined
object in different directions so that the edges of the materials have different orientations, in particular, we
concatenate the word "LOVE", as shown in Fig. 17. Next, we evaluate our proposed models and techniques in
terms of the accuracy of object material location and orientation, the accuracy of identifying various materials
and the accuracy of detecting multiple material edges in detail.

8.2 Accuracy of Object Location and Orientation
In order to verify the baseline accuracy in estimating object location and orientation, we deploy our system in
Scenario 1 and select three boards of different materials (i.e. , No1 particle, No3 plastic, No4 iron) for testing. As
shown in Fig. 13b, we first precisely fix the position, orientation and height of the slide rail, and then fix the
three boards on the slide rail respectively. We place the Tx and Rx at the marked positions and orientations,
specifically, we make the incident angles 10 ◦, 20 ◦, 30 ◦, 40 ◦, 50 ◦, 60 ◦, 70 ◦ respectively. We move the slide rail 10
times horizontally with 2mm interval at each position and collect CSIs during 10 s, 10 times for each board. We
use the center coordinates of the reflected regions of the HP and VP channels estimated at 7 different incident
angles as the location of the object material (more specifically, each 2D image pixel), and use the mean values
of the estimated AoA and AoD at 7 different incident angles to calculate the orientation of the object material.
As shown in Fig. 15a and Fig. 15b, for different objects, the median error of location is less than 5 cm, and the
median error of orientation is less than one degree.
In addition, we validate the location estimation accuracy at different incident angles, which is necessary

because Wi-Painter uses the power ratio of the orthogonally polarized signals at multiple incident angles as the
feature for identifying materials and detecting edges. We calculate the center coordinates of the reflected regions
of the HP and VP channels at 7 different incident angles respectively. The results are shown in Fig. 15c, and it can
be seen that the average location error is less than 6 cm. Furthermore, WiFi signals travel different distances. We
respectively estimate the accuracy of the location when the distance from the transceiver to the target material is
2m, 3m, and 4m. As shown in Fig. 15d, the average location error is less than 3 cm at different distances.

8.3 Accuracy of Identifying Various Materials
To evaluate the performance of material identification based on the power ratio of orthogonally polarized signals
at multiple incident angles, we placed 16 boards as shown in Fig. 14 in Scenario 1 for testing. Here, we collect
CSIs for each board for 20 s at incident angles of 10 ◦, 20 ◦, 30 ◦, 40 ◦ to calculate the power ratio, and then identify
different materials based on the four power ratios. The data of each board at each incident angle is divided into
100 sets. Our material identification model does not rely on the complex features of the raw CSIs, so we can use
simple classification methods. Specifically, we use k-Nearest Neighbor (KNN) to classify 8 different materials,
where the training set and test set each account for 50% of the data (i.e. , 50 sets of data are used for training, 50
sets data for prediction). We set 𝑘 of KNN to 10 for 1000 repeated experiments and use Euclidean distance as the
distance metric of KNN. As shown in Fig. 16a, the average accuracy of material classification is 96%. In particular,
for No. 5 (titanium) and No. 6 (steel) as shown in Fig. 14, which look very similar on the surface, Wi-Painter can
still accurately identify them, which is very challenging for computer vision-based solutions.

It is worth noting that since KNN does not require an explicit training process, we can easily add new materials.
In particular, we can build a material database based on existing materials. When identifying an unknown
material, we set a threshold to determine whether the unknown material belongs to the original material database.
When an unknown material is detected as an original material, we add it under the original material. When the
unknown material is detected as not being in the original material, we add a new material and add it to the new
material. However, since there is no prior knowledge of the material, we only classify it as a new material and
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Fig. 16. Accuracy of identifying various materials: (a) Confusion matrix for identifying 8 different types of materials based on
power ratios at 4 incident angles. (b) The impact of the number of power ratios with different incident angles on material
identification accuracy. (c) The impact of size on material identification accuracy. (d) The impact of thickness on material
identification accuracy.

cannot accurately obtain its material category (e.g. , which type of wood or metal). We consider this as one of our
future work.

The accuracy of material identification based on the power ratio of orthogonally polarized signals at multiple
incident angles is directly affected by the number of power ratios. We use the power ratios with 1, 2, 3, and 4
incident angles to identify material types for analyzing this effect in detail. Specifically, there are 4 situations for
1 incident angle, i.e. , 10 ◦, 20 ◦, 30 ◦, 40 ◦; there are 6 situations for 2 incident angles, i.e. , pairwise combinations
of 4 incident angles; there are 4 situations for 3 incident angles, and one situation for 4 incident angles. As shown
in Fig. 16b, the average accuracy improves with the number of power ratios at different incident angles.
In addition, the same material type has different sizes and thicknesses. We identify three different sizes of

aluminum and solid wood respectively, with an average accuracy of 92% and 81%, and the results are shown in
Fig. 16c. We also identify three different thicknesses of aluminum and two different thicknesses of rubber, and
the results are shown in Fig. 16d, with an average accuracy of 99% and 99%.

8.4 Accuracy of Detecting Multiple Material Edges
Before evaluating these, in order to better visualize the material edges, we define the 8 materials used and
background (i.e. , no target) as 9 different colors as shown in Fig. 18.
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Fig. 17. We concatenate the word "LOVE" for material
edge detection, which includes edges made of the
same material, edges made of different materials, and
edges with different orientations.

Back-
   No1     No2     No3     No4    No5     No6     No7    No8ground

Fig. 18. We define the 8 materials used and background (i.e. ,
no target) as 9 different colors.

Scenario 2 Scenario 2Scenario 3Scenario 3

Fig. 19. Simple imaging results based only on localization and material identification, in two different scenarios.

Sample imaging results. In Scenario 2 and Scenario 3 , we put the concatenated word "LOVE" by the same
material or different materials as shown in Fig. 17 to further identify the material and detect the edges of the
materials. Likewise, we collect CSI data at incident angles of 10 ◦, 20 ◦, 30 ◦, 40 ◦, respectively. We fix the four
spliced boards on the slide rails in turn, move the boards horizontally 2 cm each time and collect the CSI during
the period, then move the boards vertically 2 cm, and repeate this process. In particular, we move four letters
50 cm horizontally. However, for the letters "L", "O", and "V", we move 50 cm vertically, and for the letter "E", we
move 100 cm vertically.
We calculate the position of each pixel and the power ratios of the orthogonally polarized signals from the

collected CSI data and classify them. Then, based on the localization and material classification results, we map
the image. The result is shown in Fig. 19. It can be seen that the contours of the four letters can basically be
described very well. However, there are some strong speckles inside the same material. What’s more, this simple
imaging is imprecise in detecting the edges of different materials, suggesting that the refinement is necessary.
Refined imaging results. In order to obtain refined material identification and edge imaging results, we add

Gaussian shaped filter to each pixel on the basis of simple imaging results. In particular, we set the window size
to ( 3

2
√
𝜋
, 5
2
√
𝜋
), and set 𝐷𝑡ℎ𝑟𝑒 = 1.2, note that these are experience values. The non-edge pixels are then reset to

the material type that occurs most frequently around them. In addition, we linearly fit the edge pixel coordinates
using least squares to smooth them. The result is shown in Fig. 20, where the red lines are the edges of different
materials. It can be seen that the strong speckles in the original image are filtered out, and the edges are clearer.
Impact of different environments. Materials may be placed in different environments. In order to verify the

robustness ofWi-Painter to the environment, we place the spliced four letters in two different scenarios as shown
in Fig. 13c for testing. Specifically, the letters "L" and "E" are placed in Scenario 2, and the letters "O" and "V" are
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Scenario 2 Scenario 2Scenario 3 Scenario 3

Fig. 20. Refined imaging results after using Gaussian shaped filter and edge fitting on the basis of simple imaging, where the
red lines are the edges of different materials, in two different scenarios.

placed in Scenario 3. Then we combine the four letters together for material recognition and edge detection. As
can be seen from Fig. 19 and Fig. 20, Wi-Painter can cope well with different environments.

9 DISCUSSIONS AND LIMITATIONS

9.1 Potential Real-world Applications and Issues
In particular, we discuss the feasibility of Wi-Painter in potential scenarios such as factory automated assembly
lines and airport security inspections. Although we have performed experimental verification on a variety of
different materials and their combinations, and it is not difficult to automate antenna scanning, data processing
and result prediction, there is still room for improvement in the application of these complex real-world scenarios.

Firstly, the environmental interference issue needs to be solved, which is one of the open problems in wireless
sensing. Wireless signals, including WiFi, are highly sensitive to the surrounding environments, which is also
why we can use them to sense materials. So far we have only evaluated Wi-Painter in three relatively simple
scenarios, and performance in more complex scenarios awaits further evaluation. In future work, we will focus
on solving two situations: how to ensure detection accuracy when there are strong reflection paths and unknown
dynamic signals around the detected target and the WiFi transceiver.

Secondly, the ability to detect 3D targets needs to be determined. Wi-Painter currently only performs material
identification and edge detection on 2D targets, that is, we only consider single-layer target materials. However,
there are much more requirements for detecting 3D objects, especially in security inspections where it is common
for different objects to be stacked front to back or top to bottom. Since different reflections and transmissions
occur at the interface of different media, we plan to build a multiple reflection model in future work to identify
multiple layers of different target materials. In addition, we also consider combining our system with other
scattering feature-based methods to identify more diverse materials more accurately.

9.2 Setup of the Antennas and Scanning Pattern
In our current implementation, the Tx and RX antenna arrays and their scanning modes are pre-configured, and
these settings can be readily automated. However, to be truly deployed in potential scenarios, we need to further
consider the impact of deviations these settings may introduce on the performance of Wi-Painter.
Firstly, we use four sets of linearly polarized antennas with the same parameters, which are common WiFi

antennas that are readily available. However, due to the limitations of the model, deviations in the antenna
spacing settings within a single polarization channel and between two polarization channels may seriously affect
the effect of material edge detection, but not have an impact on the overall material identification. Specifically,
deviations in the antenna settings change the size of each reflective area of the current material, which is not
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affected when inside the same material, but may cause more misclassification in areas where different materials
are mixed. Although antenna setup deviations affect material edge detection accuracy, we can try to make these
deviations in antenna setup be reduced directly during fabrication, which does not add any cost.

Secondly, we use a high-precision slide rail to move the target material and manually move the transceiver to
achieve antenna scanning. The deviation of the antenna scanning may be caused by the position deviation of
the target material and the transceiver, as well as the deviation of the movement direction, which may also lead
to poor detection of the edge of the material. Moreover, when detecting different targets, it may lead to more
material misclassification. But similar to antenna setup deviations, we try to reduce such deviations through
sophisticated automation implementation and self-calibration. For example, multiple transceivers are used and
fixed while only the target material is moved with high precision. We will explore more implementations in
future work to account for these deviations without increasing costs.

9.3 Materials are Invisible
We currently perform our systematic evaluation on 16 boards with a total of 8 materials, but these materials are
all exposed. However, there are some requirements for detecting materials contained within a common material
(e.g. , plastic sheet, cloth and etc.), i.e. , the materials to be identified are invisible. Furthermore, the material to
be identified is located in a carton or suitcase. We think this is a multi-layer material identification problem. In
theory, the WiFi signal reflected by the surface of each layer of objects is different, but Wi-Painter only considers
the reflection of one layer. Therefore, our current solutions still have limitations when it comes to identifying
multi-layer materials.

9.4 Solids with Rough Surfaces and Liquids
We have so far only verified a variety of solids with smooth surfaces. It is known that the surface of many
materials is rough, but our system can still identify its material type and image it, and this has been applied in the
field of remote sensing [29]. However, it is extremely challenging to achieve fine-grained imaging effects because
WiFi signals undergo diffuse reflection rather than specular reflection, which makes our model for estimating
the position and orientation of each reflection area unusable. Therefore, only larger areas can be identified and
imaged. Furthermore, for many liquids, and they are in different containers, liquid type classification based on
wireless reflected signals is feasible, but is affected by the type and size of the container [44].

10 RELATED WORK
We briefly review related work with Wi-Painter from the following three broad categories:

10.1 WiFi-based Sensing
In recent years, a number of WiFi-based sensing systems have emerged for people tracking [25, 32, 42, 59, 60],
health monitoring [34, 36, 50, 68], object imaging [20, 31, 39, 41], material identification [15, 43, 56, 66] and etc.
In fact, WiFi signal is becoming a prime candidate for sensing indoor environment due to its ubiquity and can
work under NLoS conditions. Generally, WiFi-based sensing systems use CSI as the basic data, which reflects the
fine-grained information of signal propagation between WiFi devices and the reflection relative to the human
environment. Existing WiFi-based sensing techniques can be divided into model-based such as Fresnel Zone and
learning-based methods [63]. Although they have their own advantages and disadvantages, these WiFi-based
sensing systems are already sensitive enough, for example, they can construct 3D human mesh [23, 53], as well
as monitor breathing/heartbeat [33, 65] and keystrokes [1]. Most relevant to our work are material identification
and object imaging.
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10.2 Material Identification
Material identification is important formany applications. Some traditionally and commercially employ techniques
such as spectroscopy, radar, and X-ray, which, while high in resolution, require specialized equipment that is
costly [55, 57]. In recent years, many works have been devoted to the use of RF signals to identify materials,
especially liquid identification, including RFID-based [51, 57], UWB-based [9] and WiFi-based [13, 66]. There are
also works that use RF signals to identify soil [10, 24]. For example, RSA [69] uses 60GHz radios to identify the
surface material of nearby targets and image their boundaries. RadarCat [64] uses a 60GHz signal for accurate
material classification. TagTag [57] can simultaneously sense multiple targets by utilizing the impedance change
of the RFID tag attached to the target. mSense [55] reuses a single commodity mmWave device and uses the
reflected signal to extract interpretable and distinguishable features for materials.
LiquID [9] uses UWB signals to attenuate differently when passing through liquids to estimate complex

permittivities to identify different liquids. [37] uses UWB signals and machine learning methods to identify
a variety of solid materials, but it requires placing different materials on metal sheets and placing directional
antennas on the surface of materials to extract material-related features, and it is not suitable for identifying
certain solids such as metals. [30] uses the impact of liquid on the amplitude ratio and phase difference of the two
receiving antennas of the WiFi device to extract features related to the liquid material. WiMi [13] uses commercial
WiFi devices to extract a size-independent feature and identify 10 common liquids well.

In this paper, we are interested in detailed identification of solid materials using WiFi signals. IntuWition [66]
utilizes three mutually perpendicular WiFi Rx antennas to identify materials, [46] trains a domain-adaptive
model to achieve environment-independent object recognition in luggage using WiFi signals and directional
antennas, but they require rich frequency-dependent scattering features. More importantly, these methods cannot
fine-grainedly detect the boundaries of multiple materials. Compared with them, Wi-Painter utilizes commercial
WiFi signals and is able to accurately identify a variety of solid materials with smooth surfaces and outline the
edges of multiple materials in a fine-grained manner to achieve imaging.

10.3 Object Imaging
In recent years there has been a lot of work devoted to imaging objects using WiFi signals. In general, much work
relies on the standard back-propagation imaging method [20, 49, 67, 70], which utilizes measurements on an Rx
grid to form an image of an object by tracing the received signal back to different locations in space, but the The
resolution is lower. There are also some works that collect a large amount of data to train a neural network model
to image objects [31, 41], but are limited by the size of the training data set. A recent paper proposes a scheme
for imaging objects by tracking edges for quasi-specular reflections on smooth objects [39]. In this paper, we are
more concerned with the detection of the object’s material and its edge, i.e. , identifying the type and size of the
target material at the same time.

11 CONCLUSION
This paper presents the design and implementation ofWi-Painter, to the best of our knowledge, is the first model-
driven attempt to perform fine-grained detection of materials and edges using COTS WiFi devices.Wi-Painter
has two main technical contributions. First, it includes a multi-incident angle model that can characterize the
material characteristics of the object surface using only the power ratio of vertically and horizontally polarized
WiFi signals, without requiring rich scattering information on the object surface, and does not require WiFi
transceivers to perform high-bandwidth scans. Second, unlike previous material identification or imaging systems,
it regards the target as two-dimensional pixels, and forms a two-dimensional image simultaneously on the basis of
identifying the material type of each pixel. Our real-world evaluations show an average classification accuracy of
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93.4% across different material types, sizes, thicknesses, and environments. In addition,Wi-Painter can accurately
detect the material type and edge of the word "LOVE" spliced with different materials.
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