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freeLoc: Wireless-based Cross-Domain Device-free
Fingerprints Localization to free User’s Motions
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and Xiang-Yang Li Fellow, IEEE

Abstract— Due to contactless and convenient experiences,
WiFi-based device-free fingerprints localization technologies have
extensively attracted research attention. However, they are stud-
ied based on an assumption that the user is stationary and face a
major challenge in the presence of users’ motions. That is because
users’ motions induced CSI WiFi variations results in inconsistent
location fingerprints during training and prediction, leading to
system ineffective. To solve this problem, in this paper, we propose
freeLoc, which aims to free users’ motions (even unseen) while
maintaining accurate localization. Specifically, we construct a
domain adaptation network that defines different users and
motions as different domains, and learns domain-independent
representations to extract location fingerprints independent of
users’ motions. Unfortunately, collecting sufficient amounts of
WiFi data is difficult. To reduce the cost of labeling data and
ensure the performance of domain adaptation network, we utilize
adversarial autoencoder to build a data augmentation module
to introduce data diversity. We deploy experiments in a real
scenario, and the results show that only by labeling three motions
of three users, we can achieve accurate localization (the nearest
locations are about one meter away) for a total of 36 domains
including 6 users and 6 motions. Compared to other existing
technologies, freeLoc can improve location prediction accuracy
by up to 35%.

Index Terms—Device-free localization, fingerprints inconsis-
tency, domain adaptation, data augmentation.

I. INTRODUCTION

Stable and accurate indoor location based service (ILBS)
can provide key opportunities for many applications. For
example, by pushing location updates to users, Internet of
Things (IoT) applications such as geo-social networking [1],
point-of-interest (POI) recommendations [2], and smart home
automation [3] can be implemented. More accurate location
awareness can provide solutions for applications such as
unmanned supermarkets [4], augmented reality (AR) [5].
In recent years, many wireless indoor localization technolo-
gies have been extensively studied, such as WiFi [6]–[10],
RFID [11], [12], acoustics [13], and vision [14], [15]. Among
them, WiFi has gradually become one of the favored solutions
due to its ubiquitous infrastructures and low cost.

WiFi-based localization systems are mainly divided into
device-oriented and device-free solutions. The device-oriented
approaches achieve decimeter-level localization accuracy by
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Fig. 1. Users are often accompanied by different motions when being located,
which leads to inconsistency of location fingerprints and makes the device-
free localization systems ineffective. freeLoc does not limit the users’ motions,
while remaining accurate localization.

measuring the angle of arrival (AoA) [8], [9], time of flight
(ToF) [16] or received signal strength indicator (RSSI) [17]
from the smartphone or other WiFi device carried by the user
to the WiFi access point (AP). Due to the weakened require-
ment for users to carry smart devices, device-free localization
systems can be applied in a wider range of scenarios. Gen-
erally, device-free localization system associates the collected
RSSI or channel state information (CSI) with the location of
the user, and then extracts the location fingerprints and trains
the neural network to achieve decimeter-level localization
accuracy [18]–[20]. In particular, CSI has rich frequency and
space diversity information, and its magnitude is more stable
in time series, so CSI fingerprint is more representative in
terms of location features.

Although the device-free fingerprints localization technolo-
gies provide some convenience for users, the existing arts
still have many deficiencies in the application of real-world
scenarios. It is known that CSI is extremely sensitive to the sur-
rounding environment for it fine-grained reflects channel char-
acteristics. Previous arts have studied the impact of changes in
environment and users on CSI location fingerprints [21], [22].
However, unlike them, we observe that when the localization
systems are working, users do not always remain standing
in a certain location, but may be accompanied by various
motions, such as extending arms, bending waist, walking
with arms swinging and etc. These motions change WiFi
propagation characteristics, even for the same user in the same
location. What’s more, this inconsistency from motions is
more common than changes in the environment and users, and
limiting the user’s motions makes the localization systems less
convenient and practical. Therefore, in this paper, we focus
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on reducing the constraints of motions to make users of the
localization system more relaxed, while remaining accurate.

As mentioned above, after data training on specific motions
of specific groups of people, different motions change the
WiFi transmission characteristics. If the fingerprints are not
re-collected to train the localization systems, these may lead
to poor localization results. Fig. 1 shows a simple example.
It can be clearly seen that the WiFi reflection path between
the WiFi router and the laptop changes due to the difference
in motions. As a result, even if the same person stands at
the same location, the location features of the two situations
are very different, eventually causing the features of different
locations to overlap together. Therefore, if localization system
only train on one condition, it may be bad to predict the
localization results of the other condition. Detailed analysis
of CSI fingerprints inconsistency and observation are given
in Section II-B.

In theory, if we are able to collect CSI fingerprints from all
possible motions at each location, we could train a localization
system that is immune to the diversity of motions. However,
considering the richness of motions and the large differences
in motions of people with different body sizes, this will be
extremely time-consuming and labor-intensive, so this solution
is not practical in real world. Another easy-to-think solution is
that we mark the CSI when each user has a new motion, and
then update the fingerprint library of the localization system
in real time, so that the location fingerprint includes all known
motions. Unfortunately, this requires accurate recognition of
each motion, even for different locations and different people,
which currently no motion recognition system can achieve this.

Therefore, in order to solve the problem of inconsistent
WiFi CSI fingerprints caused by different motions, we must
solve the following two main challenges:

• Challenge 1: different motions have different impacts
on WiFi CSI fingerprints. In order to eliminate these
influences and ensure localization accuracy, we need to
cover all possible motions when creating and training
fingerprints. However, it is indeed practically impossible
to cover all possible motions.

• Challenge 2: different users have different motions due
to their different body shapes and habits. In order to
eliminate these influences, even for the same motion,
we still need to cover all possible users. However, it is
impractical to label all users’ data associated with the
corresponding locations.

To tackle above challenges, we propose freeLoc, a WiFi
device-free localization system based on a fine-grained deep
learning framework of domain adaptation and data augmenta-
tion, which is capable of locating different users accompanied
by different motions, only collecting and labeling a small
amount of CSI fingerprints.

Firstly, we design a localization system based on the domain
adaptation technology [23] to reduce the coupling of finger-
prints features and users’ motions. When the user’s motion
changes, freeLoc can predict the location well without relabel-
ing the data. Specifically, freeLoc regards the users’ motions
with location labels in the original fingerprints database as
the source domains, and the emerging users’ motions without

location labels as the target domains. Then, we train the
model using all the data from the source and target domains
together. The ultimate goal is to learn the common features
of all data in the source and target domains, while downplay-
ing the differences between the source and target domains.
Therefore, we pass a domain discriminator to identify different
domains, and the feature extractor is designed to try to fool
the domain discriminator to minimize the prediction accuracy
of the domain discriminator, while maximizing the location
prediction accuracy together with the location predictor. In this
way, freeLoc can predict different data from different domains
(i.e., different motions) without relabeling. In addition, in
order to improve the accuracy of location prediction, we
carefully design the loss function. Specifically, we introduce
loss functions with labeled and unlabeled data respectively in
location predictor, and input the data with location prediction
results and without location prediction results to the domain
discriminator respectively.

Then, to obtain sufficient source domains’ data to train
the domain adaptive network, we generate synthetic data
similar to the collected location-labeled data based on the data
augmentation model. In this way, we can expand the scale of
source domains’ data, and increase the diversity of users and
motions in the source domains’ data, so that a very rich set
of users and motions can be covered with a small amount of
labeled data. Specifically, we use one adversarial autoencoder
(AAE) [24] for a small number of user fingerprints for each
location, and then separately generate fingerprints for each
location that are different from the base users and motions. It is
worth noting that these synthetic fingerprints are also location-
labeled. Therefore, freeLoc can predict data about more users
and motions without collecting and labeling their fingerprints.

Overall, the contributions are summarized as follows:
• In this paper, we analyze the impact of different users’

motions on WiFi-based device-free fingerprints localiza-
tion. Then, we proposed freeLoc, which aims to free
users’ diverse motions (even unseen) while maintaining
accurate localization.

• We use domain adaptation technology to reduce the
coupling of location fingerprints with users and motions,
i.e., we treat different users and motions as different
domains and enable freeLoc to learn domain-independent
location features. We then use data augmentation methods
such that using only a small amount of location-labeled
data, freeLoc can handle well a variety of rich, location-
unlabeled data for different users and motions.

• We build a localization testbed based on four ASUS RT-
AC86U routers with Nexmon CSI extractors installed,
and evaluate freeLoc in an empty room of 8m × 10m.
We define six different motions and invite six volunteers
of different heights and weights to participate in the
experiments. We ask each volunteer to perform each
motion at ten different locations (the closest distance is
about one meter). The results show that freeLoc only by
labeling three motions of three users, accurate localization
of all 36 domains can be achieved, which is at least
12% better than other existing technologies (the worst-
case accuracy by 35%).
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(c)
Fig. 2. WiFi CSI magnitudes are inconsistent due to different locations, different people, or different motions, and the impact of motion may be
more important than location and people: (a) Same people with the same motion at different locations lead to different WiFi CSI magnitudes. (b) Different
people with the same motion at the same location lead to different WiFi CSI magnitudes. (c) Different motions of the same people at the same location lead
to different WiFi CSI magnitudes.

The rest of this paper is organized as follows: Section II
presents the preliminary tests of WiFi CSI fingerprints incon-
sistency. In Section III, we provide an overview of freeLoc.
In Section IV, we describe the modules design of proposed
framework in details. Implementation and evaluation are pre-
sented in Section V and Section VI. Section VII discusses the
related works. We finally conclude our work in Section VIII.

II. CSI FINGERPRINTS AND INCONSISTENCY

In this section, we present the basics of device-free local-
ization based on WiFi CSI fingerprints, give the general form
of input data using WiFi CSI as fingerprints, and analysis
the inconsistencies in CSI fingerprints caused by different
locations, different people and different motions based on tests
in a real environment.

A. Passive Localization based on CSI Fingerprints

In wireless communication, channel state information (CSI)
is the channel attribute of the communication link. It describes
the attenuation factor of the signal on each transmission path,
that is, the value of each element in the channel matrix H,
such as signal scattering, multipath, shadowing fading, power
decay of distance and etc [25]. Therefore, for fixed WiFi Tx
and Rx, when people stand in different locations, they will
absorb or reflect WiFi signals in different ways, making the
value of CSI different. A passive localization system marks
these different CSI values, thereby enabling an estimate of the
person’s location [22]. In addition, some tools such as Intel
5300 CSI Tool, Atheros CSI Tool and Nexmon CSI Extractor
have been able to extract CSI from received data packets and
parse out the channel matrix H.

Recently, WiFi technologies commonly use orthogonal
frequency division multiplexing (OFDM) and multi-input
multi-output (MIMO), thus channel between each antenna pair
of Tx-Rx consists of multiple subcarriers. Assume that Tx-Rx
has a total of Nss = Ntx×Nrx spatial streams, and each WiFi
channel is divided into Nsc frequency subcarriers by OFDM.

In this paper, we use the amplitudes of CSI subcarriers on
all spatial streams at time t as data input to the localization
system, i.e., X[t] [22]:

x[t] = (|h1,1[t]| , · · · , |h1,Nsc
[t]| , · · · , |hNss,Nsc

[t]|) , (1)

where hi,j [t] represents the CSI value of the i-th stream on
the j-th subcarrier collected at time t, and | · | denotes the the
magnitudes of complex numbers.

B. CSI Fingerprints Inconsistency Analysis

To verify the CSI fingerprints inconsistency caused by the
motions of people, we perform preliminary tests in an empty
room of 8m × 10m. Specifically, we ask four volunteers of
different body sizes to perform three motions (i.e., keeping
standing, stretching arms, bending waist) at five different
locations in the room. Then we collect the CSI of each
condition based on ASUS RT-AC86U router and Nexmon [26]
at the ISM band 5GHZ/80MHz, and the duration of each
condition is one minute. During the collection of CSI, we
make the volunteers fix a certain motion. It is worth noting that
there are no changes in the environment and WiFi transceivers
during the collection of CSI for controlling variables. We
extract the magnitudes of the subcarriers of the first spatial
stream of each CSI packet (removing the subcarriers used
for protection and null), and perform normalization processing
to specifically analyze the distribution of CSI magnitudes at
different locations, different people and different motions.

We first compare the CSI magnitudes of different locations,
where both the person and the motion are the same. As
shown in Fig. 2a, the CSI magnitudes of some subcarriers
are different at different locations. Then, we compare different
people, where both the location and the motion are the same.
As shown in Fig. 2b, the CSI magnitudes are not exactly
the same of all subcarriers for different people. Finally, we
compare the same person with different motions at the same
location, and Fig. 2c shows the result. To further analyze
the influence from different locations, people and motions,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3390748

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 27,2024 at 15:24:18 UTC from IEEE Xplore.  Restrictions apply. 



4

Fig. 3. System overview: the location-labeled data pass the data augmenter to generate many similar augmented data, together with the unlabeled data go
through the feature extractor to generate latent features, then we use the location predictor to obtain predicted locations that maximize localization accuracy
and take positive during backpropagation, while using the domain discriminator to minimizing domain prediction accuracy to learn domain-independent
features take negative during backpropagation.

we analyze the similarities between them. Specifically, we
differ the CSI magnitudes of the three situations and obtain
their average values. The results in Fig. 2 show that the
difference introduced by different motions is greater than the
difference between locations and people. Obviously, we have
the observation, i.e., Observation: even if the same person
is in the same location, the difference in CSI magnitudes
may be large when the motions are different. As shown
in Fig. 2, the impact of motions may be more important
than locations and people. The localization accuracy may
be poor when users perform untrained motions at the
predicted location, as shown in Fig. 1.

From the above analysis and two key observations, we think
that the user’s own motions do have an impact on the WiFi
CSI location fingerprints, and it is necessary to eliminate this
impact. Next, we illustrate how our proposed model does this
while improving location prediction accuracy.

III. SYSTEM OVERVIEW

A. Labeled/Unlabeled Data

In this paper, we focus on the impact of the users’ own
motions on CSI fingerprints localization. We collect CSI data
when different people do different motions and extract the
magnitudes as fingerprints as shown in Equa. 1. As shown in
Fig. 3, for some motions, the data of some people is labeled
with location labels, i.e., labeled datasets:

XL = {(xL[t],yL[t])} , (2)

where xL[t] is a labeled CSI data, and yL[t] is the location
label. While for other people or other motions, there are
no location labels, i.e., unlabeled datasets XU = {xU [t]}.
We regard different people and motions as different domains,
where the domains with location labels are the source domains,

and the other domains are the target domains. We use location-
labeled source domains data DS for initializing the system and
together with unlabeled source or target domains data DT

for training the predictive model. Our goal is to have good
localization results for both location-labeled and location-
unlabeled data X = XL ∪XU .

B. Model Architecture

As shown in Fig. 3, the proposed model mainly consists
of four modules: data augmenter, feature extractor, location
predictor and domain discriminator.

Data augmenter. Firstly, the location-labeled data enters
the data augmenter based on AAE, which generates data
separately based on the existing labeled data for each location,
to expand more potential users and motions.

Feature extractor. Secondly, We feed the augmented and
unlabeled data into the feature extractor based on convolu-
tional neural network (CNN) to generate latent features for
low-dimensional representations.

Location predictor. Thirdly, based on the generated latent
features, the location predictor is used to obtain the predicted
location that maximizes the localization accuracy.

Domain discriminator. At the same time, in order to
eliminate the impact of different motions (i.e., domain-specific
features), we design a domain discriminator to predict each
domain, i.e., identify which person do which motion. The
goal of the domain discriminator is to maximize domain
labeling accuracy, which seems contradictory to learning
domain-independent features. However, the feature extractor is
designed to try its best to fool the domain discriminator, i.e.,
minimize its prediction accuracy, while improving the location
prediction accuracy. In this way, we achieve learning common
motion-independent features for defined locations. Finally, we
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Fig. 4. Data augmenter based on AAE for labeled CSI data.

introduce two constraints to optimize the model for improving
location prediction accuracy.

IV. DESIGN

A. Data Augmenter

In order to better eliminate the influence of different motions
from different people, as much CSI data as possible from
different users and motions should be collected. However, the
time and labor cost of collecting and labeling data is huge,
so we use data augmentation to generate more fingerprints.
Specifically, we design the AAEs shown in Fig. 4, and use
one AAE for each location following the location markers
of the fingerprints. AAE [24] is a generative model that
applies adversarial ideas to the variational autoencoder (VAE)
training process, and its typical network architecture consists
of an autoencoder (AE) and a generative adversarial network
(GAN). VAE often leave regions in the space of prior distri-
butions that do not map to actual samples in the data. AAE
aims to improve this situation by encouraging the encoder’s
output to completely fill the space of the prior distribution,
thus enabling the decoder to generate realistic samples from
any data point sampled.

During training, the data augmenter divides the labeled
data into K subsets Xk

L, k = 1, 2, · · · ,K, each of which
corresponds to the fingerprints of one location. Firstly, the
labeled data xk of the kth AAE is fed into the encoder of
AAE#k to generate a latent vector z ∼ q(z), where q(z) is
aggregated posterior distribution. z is sent to the decoder, and
generate a vector x̂k to reconstruct the labeled data xk. We
define the reconstruction loss Lk

B using mean square error
(MSE):

Lk
B =

1

2Nk
G

Nk
G∑

i=1

(
xk
i − x̂k

i

)2
, (3)

where Nk
G is the number of samples.

Then, we train the discriminator to regularize the rebuild
data. At this time, the encoder of AE becomes the generator
of GAN, and its output xk is sent to the discriminator together
with the vector z′ that obeys the prior distribution p(z). We
compare several common prior distributions, such as Gaussian
distribution, uniform distribution, and Laplace distribution,
and we chose Gaussian distribution N(0, kδ2) as the prior
distribution p(z). For the discriminator, the label ak is 0 when
xk is used as input, and the label ak is 1 when z′ is used as

Unlabeled 
data

Augmented 
data

Conv-2D

BatchNorm ReLU Max-pooling

Conv-2D Conv-2D

Dropout
Features

... ... ...
48×48×16 24×24×32 4×448×48×16

Fig. 5. Feature extractor based on CNN for augmented or unlabeled data.

input. Cross entropy is used as the loss function Lk
G of the

discriminator:

Lk
G = − 1

Nk
G

Nk
G∑

i=1

(
aki log

(
âki

)
+

(
1− aki

)
log

(
1− âki

))
,

(4)
The loss function of the whole AAE#k is defined as the sum
of the reconstruction loss and the discriminator loss:

Lk
AAE = Lk

B + Lk
G. (5)

It is worth noting that because we perform data synthesis
on the data for each location, we can assign location labels to
the data after they have been synthesized for creating labeled
synthetic data:

Xk
S =

{
(xk

S)[t], k)
}
. (6)

Our goal for synthetic data is that the size of the synthetic
data at the kth location is 20 times larger than the size of the
original labeled data. Finally, we collect all the synthetic data
XS together with the source data as labeled augmented data
XA = XS ∪XL.

B. Feature Extractor

The feature extractor is used to extract location-related
features to maximize location prediction accuracy while mini-
mizing domain prediction accuracy. We feed all the augmented
labeled data and unlabeled data together into the feature
extractor to output their feature vectors. In this paper, we
use the widely adopted CNN to extract location features.
Specifically, as shown in Fig. 5, we employ a three-layer
stacked CNN to extract features. At each layer of the CNN,
we use convolutional layers with 2D convolutional kernels,
utilize rectified linear units (ReLU) to introduce nonlinearities,
and insert batch normalization layers to speed up training
and dropout layers to avoid overfitting. Then, we use a max-
pooling layer to reduce the size of the representation. Given
the input data Xi, we can obtain features as follows:

Zi = CNN(Xi; Θcnn), (7)

where Θcnn is the parameter set of CNN.

C. Location Predictor

After extracting the feature vector Zi, we feed it into the
location predictor to predict the location, as shown in Fig. 3.
Firstly, we learn a representation Vi for Xi using three fully
connected layers and the activation function ReLU:

Vi = ReLU(Zi; Θfc), (8)
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where Θfc is the parameter set of ReLU. The reason for
using three fully connected layers is that more parameters can
be learned, and more fully connected layers do not improve
performance much. Then to predict the location, we map Vi

to a new latent space RC , where C is the number of location
labels. Finally, we pass Vi through an output layer whose
activation function is softmax, so as to obtain the predicted
probability vector of a certain location:

ŷi = Softmax (WvVi + bv) , (9)

where Wv and bv are the parameters.
To improve the accuracy of location prediction, we predict

location labels for labeled and unlabeled data [27], and record
them as ŷli and ŷui , respectively. For both labeled and unlabeled
data, we use cross-entropy as the loss function:

La = − 1

Nl

Nl∑
i=1

C∑
c=1

ylic log
(
ŷlic

)
, (10)

Lu = − 1

Nu

Nu∑
i=1

C∑
c=1

ŷuic log (ŷ
u
ic) , (11)

where Nl and Nu are the number of labeled and unlabeled
data used for training, respectively. Finally, the overall loss
function for the location predictor is as follows:

LLP = La + γLu, (12)

where γ is the weight value used to constrain the influence of
unlabeled data on the decision of the location predictor.

D. Domain Discriminator
Domain adaptation is a special case of transfer learning,

the idea is to map data features in different domains to the
same feature space, so that domain-invariant features can be
obtained [28]. In this paper, we use domain adversarial deep
learning [23] techniques to leverage unlabeled data to elimi-
nate features related to the users’ motions. In our adversarial
network, a domain is defined as a pair of user and motion.
The reason for this definition is that different motions have
different effects on the WiFi CSI location fingerprints, and
different users have different body sizes. Specifically, our goal
is to design a domain discriminator to recognize different users
and motions, combined with the feature extractor to make it
fool the domain discriminator, resulting in location features
that are independent of the users’ motions.

Firstly, the output Zi of the feature extractor contains
not only location-specific features, but also domain-specific
features already. As shown in Fig. 3, in order to match the
conditional distribution, we concatenate Zi with the predicted
label output ŷi of the location predictor [29], which together
feed into the domain discriminator to predict the domain
label [30]:

Ci = Zi ⊕ ŷi, (13)

where ⊕ is the concatenation operation. Next, we learn a
representation Mi of Ci using three fully connected layers
and the activation function ReLU:

Mi = ReLU(Ci; Θdd), (14)

Algorithm 1 Model Training Process.
Input: Augmented data XA with labels YA, unlabeled data

XU , location number C, domain number D.
Output: Model with parameters Θcnn, Θfc, Θdd, (Wv, bv)

and (Wm, bm).
1: Initialize parameters Θcnn,Θfc,Θdd, (Wv, bv), (Wm, bm);
2: for i← 1; i <= C; i++ do
3: while not done do
4: Sample data X with Y from XA with YA and XU ;
5: Obtain Z via passing X by Equ. 7;
6: Obtain V via passing Z by Equ. 8;
7: predict location labels ŷ via passing V by Equ. 9;
8: Compute location predictor loss LLP using Equ. 12;
9: Predict domain labels d̂o via passing by Equ. 17;

10: Obtain C via passing Z and ŷ by Equ. 13;
11: Obtain M via passing C by Equ. 14;
12: Predict domain labels d̂ via passing by Equ. 15;
13: Compute domain discriminator loss LDD using

Equ. 19;
14: end while
15: end for
16: Obtain overall loss Lall by Equ. 20;
17: Update parameters Θcnn,Θfc,Θdd, (Wv, bv), (Wm, bm).

where Θdd is the parameter set of ReLU. Then, to predict
the domain, we map Mi to the domain distribution space and
pass Mi through an output layer whose activation function is
softmax, so as to obtain the predicted probability vector of a
certain domain:

d̂i = Softmax (WmMi + bm) , (15)

where Wm and bm are the parameters.
We use cross-entropy as the loss function for domain label

prediction:

Ld = − 1

N

N∑
i=1

D∑
j=1

dij log
(
d̂ij

)
(16)

where N is the number of training data, and D is the number
of domains. Furthermore, to improve the performance of the
domain discriminator, we not only align the posterior distri-
butions of the source and target domains, but also align the
marginal distributions between the source and target domains.
Specifically, we directly feed the output Zi of the feature
extractor into the domain discriminator, and go through the
same process to predict the domain label d̂oi . Again, we use
the cross-entropy function as the loss function:

d̂oi = Softmax (Wm ReLU(Zi; Θdd) + bm) , (17)

Lo = − 1

N

N∑
i=1

D∑
j=1

dij log
(
d̂o
ij

)
(18)

Finally, the overall loss function for the domain discriminator
is as follows:

LDD = αLd + βLo, (19)

where α and β are the weight values.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3390748

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 27,2024 at 15:24:18 UTC from IEEE Xplore.  Restrictions apply. 



7

1 m

(a)

Tx

Rx1

Rx2

Rx3

L1

8m

10m

1m
L2

L9 L10

(b)
Fig. 6. We deploy one Tx and three Rx in a room of 8m× 10m, and select
ten locations L1− L10, the closest distance between them is less than 1m.

E. Model Training

In our model, we need to minimize the loss LLP of
the location predictor to maximize the location prediction
accuracy, while maximizing the loss LDD of the domain
discriminator so that domain-independent features are learned.
Therefore, we get the overall loss function as shown below:

Lall = LLP − LDD = La + γLu − αLd − βLo. (20)

We train our model with the augmented labeled data and
unlabeled data, and iteratively update the model parameters
during the training process. It is worth noting that in order
to achieve the goals of our model, the loss function of the
location predictor is taken positive during backpropagation,
while the loss function of the domain discriminator is taken
negative during backpropagation. The specific process is given
in Algorithm 1.

V. IMPLEMENTATION

A. Experimental Setup

Hardware. We mainly build the hardware platform based
on four ASUS RT-AC86U routers equipped with bcm4366c0
network interface card (NIC), one of which is used as Tx and
three are used as Rx. The four routers have the same setup,
i.e., four transmit/receive antennas, and fixed on a tripod one
meter above the ground, in order to better detect motions,
as shown in Fig. 6a. During the data collection, we use an
industrial personal computer (IPC) with Ubuntu 20.04 LTS
operating system to remotely control four routers via Ethernet.
In addition, we perform model training and prediction on a
computer with Windows 10 system (Intel-i5 2.7GHz CPU,
32GB RAM).

Environment settings. As shown in Fig. 6b, the experi-
mental environment is an empty room of 8m× 10m, and we
place four routers near the four sides of the room. All tests
cover ten different locations, marked L1, L2, · · · , L10, with the
distance between the nearest two marked points being about
1m. It is worth noting that the environment remains unchanged
during all tests, because changes in the environment also cause
changes in the CSI fingerprints, but this paper does not analyze
this.

People and motions. To collect CSI for different motions,
we define six types of motions (i.e., M1-M6) as shown in
Fig. 7. These include five common motions, i.e., five common

Keeping 
standing

Stretching 
arms

Bending 
waist

Casual 
motions

Walking along 
direction 1

Walking along 
direction 2

Fig. 7. We define five common motions, as well as casual motions, and collect
the above six sets of CSI data for each person at each location.

motions that require the people to remain still during data
collection. We also specifically declare a casual motion, i.e.,
the people can do any motion in the marked location area
during the data collection, such as turning in circles, squatting,
shaking and etc. It is worth noting that we have two main
reasons for defining these six detailed motions. Firstly, body
movement changes the propagation path of WiFi signals on
a large scale. The purpose of this paper is to eliminate this
impact on fingerprint localization, and these six motions are
easy to occur in people’s daily lives. Secondly, it is clear that
different motions define different domains, which facilitates
verification of the effectiveness and robustness of freeLoc. In
addition, the same motion performed by different people also
have different effects. Therefore, we recruited six volunteers
(i.e., P1-P6) with different heights and weights to record the
CSI of different people. Their height ranges from 160cm to
188cm, and their weight ranges from 55kg to 96kg.

B. Data Collection and Prepossessing

We install Nexmon CSI extractor on each of the four routers
and collect CSI using injection/monitor mode [26]. The WiFi
channel is set to 5GHz/80MHz, minus the subcarriers used for
protection and empty load, the number of available subcarriers
is Nsc = 234. Both the spatial stream and the core stream are
four, and the number of Rx is 3, so Nss = 4×4×3 = 48. We
require each volunteer to do each motion for one minute at
each location. We specify Tx to send 100 packets per second,
and three Rx to monitor all packets.

We select 192 subcarriers for the convenience of data
construction, and use 10 consecutive packets in the time
series to obtain dynamic features, so the size of each data
is 48 × 192 × 10 = 96 × 96 × 10. We split the data into
6 × 6 = 36 domains according to people and motions, and
randomly split the collected data for each domain into 50%
training data and 50% testing data. In addition, for the training
data, the source domains data is with location labels, while
the target domains data is without location labels. Then we
extract the CSI magnitudes of all available subcarriers for CSI
fingerprints. In addition, all labels are encoded using one-hot.

C. Baseline Methods

In this paper, we compare the performance of freeLoc with
the following baseline methods, and analyze the necessity of
two key modules of freeLoc.
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Fig. 8. The location prediction confusion matrices obtained after the predicted data of ten locations pass through (a) basic CNN, (b) AAE-only, (c) domain
adaptation-only and (d) freeLoc respectively.
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Fig. 9. The location prediction confusion matrices obtained after the predicted
data of ten locations pass through (a) DAFI, (b) FiDo.

• Basic CNN is used as the baseline in this paper, that
is, without data augmentation and domain adaptation,
the labeled and unlabeled data are directly input into
the CNN-based feature extractor to directly predict the
location label.

• AAE-only implements only the AAEs of freeLoc, and
directly connects them to the feature extractor and the
location predictor without domain adaptation.

• Domain adaptation-only implements only the domain
adaptation network of freeLoc, i.e., directly feeds labeled
and unlabeled data into the feature extractor, location
predictor, and domain discriminator without AAEs.

• FiDo [21] takes into account the influence of different
users, introduces data diversity using VAE, and learns
domain-adaptive localization classifiers based on a special
neural network with a joint classification reconstruction
structure.

• DAFI [22] considers the impact of environment changes,
uses two domain discriminators and pseudo-location
labels for adversarial learning, and proposes a semi-
supervised machine learning pipeline to solve the finger-
prints inconsistency problem.

VI. EVALUATION

A. Localization Accuracy

In order to evaluate the performance of freeLoc as a whole,
we first select three motions (M1, M4 and M6) of three
volunteers (P1, P4 and P5) in the training data as source

TABLE I
RECALL, PRECISION AND F1-SCORES FOR ALL LOCATIONS, USERS AND

MOTIONS.

Method Recall Precision F1-scores
Basic CNN 29.42% 49.06% 36.78%
AAE-only 58.44% 72.05% 64.63%

Domain adaptation-only 89.04% 61.91% 73.03%
DAFI 52.78% 57.15% 52.40%
FiDo 65.74% 81.00% 67.03%

freeLoc 86.16% 84.32% 85.23%

domains data, i.e., with location labels, and the remaining
volunteers or motions are used as target domains data, i.e.,
without location labels, and all data have domain labels.
Among them, domain adaptation-only and freeLoc are all able
to use location-labeled data and location-unlabeled data to
train their respective models, but basic CNN and AAE-only
just use location-labeled data to train its model. Then we
compare freeLoc with the above baseline methods. Table I
presents the recall, precision and F1-scores for all locations,
users and motions. It can be seen that the accuracy of basic
CNN is extremely low because it only uses less labeled data
for training. AAE-only and domain adaptation-only improve
some accuracy by data augmentation and domain adaptation
respectively, but there is still much room for improvement. In
addition, since it only utilizes domain adaptation technology,
DAFI is slightly less effective than FiDo in dealing with our
problem, and both are weaker than freeLoc. Compared with
these techniques, freeLoc can improve the precision by at worst
35%.

We also give the location confusion matrix of each method
to better compare freeLoc with other methods, and the results
are shown in Fig. 8 and Fig.9. From the results, compared
to other schemes that cannot accurately distinguish multiple
locations, freeLoc can have high classification accuracy in
almost every location. Although the classification accuracy
of a few locations is lower (e.g., L8, L10), unlike other
solutions, freeLoc does not have the situation where it is
almost completely unable to distinguish different locations.
In addition, it can also be seen from Table I that freeLoc has
higher recall, precision and F1-scores at the same time.
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Fig. 10. Robustness of freeLoc to (a) six different motions (M1-M6) and (b) six different people
(P1-P6).
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Fig. 11. Accuracy with or without the two
constraints (L u,L o) of freeLoc.
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Fig. 12. Visualization results of location features after going through (a) basic
CNN and (b) freeLoc respectively.

B. Visualization of Location Features

The goal of the deep learning model we propose in this pa-
per is to learn a representation of location features independent
of the users’ motions. To evaluate the learned representations,
we conduct the following experiments on the collected CSI
dataset. Specifically, from the location-unlabeled data in the
target domains, we select the data of two motions of two
locations, i.e., four domain-location pairs. We then randomly
select 120 samples for each domain-location pair, and finally
plot the learned representations of these samples by only the
feature extractor and freeLoc according to Equ. 7, respectively.

We demonstrate on 2D space with t-SNE [31] and the results
are shown in Fig. 12. It is worth noting that we use different
colors (orange and blue) to represent different locations, and
different shapes (circle and triangle) to represent different
motions. As can be seen in Fig. 12, when basic CNN is used to
extract location features, the features of the two locations are
overlap due to the influence of different motions. In addition,
the location features extracted by freeLoc are concentrated in
two clusters, and there is almost no overlap between different
locations. This demonstrates the effectiveness of the proposed
deep model, i.e., learning location features independent of the
users’ motions.

C. Robustness to Different Motions

In order to analyze the robustness of freeLoc in detail,
we first divide the data into 6 groups according to different
motions, and predict all the locations respectively (the source
domains data comes from M1, M4 and M6 of P1, P4 and
P5). Accuracy is shown in Fig. 10a. The results show that
for the three kinds of motions including the source domains

and the target domains, the location predictions are above
84%, while for the three motions that are all target domains,
the prediction are still above 76%, although it has declined.
Therefore, freeLoc maintains robustness to different motions.

D. Robustness to Different People

Furthermore, we divide the data into 6 groups according to
different volunteers, and predict all the locations respectively
(the source domains data comes from M1, M4 and M6 of P1,
P4 and P5). Accuracy is shown in Fig. 10b. The results show
that for the three users including the source domains and the
target domains, the location predictions are above 86%, while
for the three users that are all target domains, the prediction
are still above 75%. Therefore, freeLoc maintains robustness
to different people.

E. Effect of Constraints

Finally, we verify the impact of the two constraints we
propose on the loss function in the model design, i.e., Lu and
Lo. Specifically, we perform model training for the following
four situations in the loss function: (La, Ld), (La, Lu, Ld),
(La, Ld, Lo) and (La, Lu, Ld, Lo), and then use the trained
model to predict all locations, users, and motions. As shown
in Fig. 11, the location prediction accuracy without two
constraints is much lower than with two constraints. This
shows that it is not feasible to directly use the original DANN
network [23] to train our data, thus freeLoc is necessary.

VII. RELATED WORK

In this section, we briefly review related work with freeLoc
from the following two broad categories:

WiFi-based indoor localization. For more than a decade,
device-oriented and device-free solutions have been devel-
oped for WiFi-based high-precision indoor localization and
tracking, using information including RSSI and CSI. Common
device-oriented localization ideas include AoA-based [8], ToF-
based [16], fusion of AoA and ToF [9], RSSI fingerprints [17].
These device-oriented methods require users to carry smart-
phones, smart watches or other WiFi devices, and require
dense deployment of WiFi APs in the environment, which
is not convenient and practical in some scenarios. On the
other hand, device-free localization schemes use WiFi signals
reflected by the human body to estimate the user’s location.
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Their common ideas includes two aspects: measuring the pa-
rameters of the reflection path of the human body (AoA, AoD,
Doppler and etc.) [32]–[34], and associating the characteristics
of RSSI or CSI with the locations of the human body to
create fingerprints [18], [19]. Among them, fingerprint-based
methods generally need to collect fingerprints offline, and then
locate users by matching real-time WiFi features with the
collected fingerprints. In order to improve the localization ac-
curacy and reduce the fingerprints collection cost, many deep
neural network-based feature extraction, data augmentation,
fingerprints library mapping and updating schemes have been
studied [20], [21], [35].

Domain adaptation for WiFi inconsistency. RSSI and
CSI are extremely sensitive to the surrounding environment.
Changes in the environment, people of different sizes, different
motions and even different transmitting/receiving devices may
cause changes in reflected information, which is WiFi signal
inconsistency [20]. Updating fingerprints in time can ensure
the localization accuracy well, but collecting enough data is
very expensive and impractical. In this case, it is necessary
to use limited data to learn a transferable model. Therefore,
domain adaptive learning is gradually being used in multiple
perception systems including WiFi fingerprint localization to
improve the learning performance in data-poor target domains
by minimizing the data distribution difference between source
and target domains. RSSI-based fingerprints localization sys-
tems show that the accuracy can be improved by utilizing
a domain-adaptive-based approach to fingerprints collection
time and device [36]–[38]. In CSI-based fingerprints localiza-
tion, some works also use domain adaptive methods to combat
the problem of CSI inconsistency caused by environmental
changes and different users to improve accuracy [21], [22].
In addition, domain adaptation is also widely used in human
activity recognition [30], object recognition [39] and etc.

Data augmentation for WiFi sensing. In WiFi sensing,
data collection and labeling are very difficult. Because it
cannot be easily observed like video data, WiFi signals can-
not be directly understood. Therefore, WiFi sensing usually
requires tedious data collection and labeling, which makes
many solutions based on deep learning networks difficult to
expand. Recently, some work has applied data augmentation
schemes to WiFi sensing technology, aiming to synthesize
a large amount of similar data through network models or
physical mapping from a small labeling data. There are two
typical WiFi sensing data generation methods. The first is
to migrate data augmentation schemes from other fields to
the WiFi sensing field [21], [40], [41], such as flipping and
translation, VAE, and GAN. These methods directly convert
labeled WiFi sensing data into the network to generate similar
data that conforms to a specific distribution. The second
method is to embed the theoretical model into the network
learning model [42], [43], so that the generated data is more
consistent with the actual WiFi channel. Although these data
augmentation schemes show excellent performance in specific
sensing tasks, they do not consider complex scenarios with
highly coupled human motions.

VIII. CONCLUSION

In this paper, we propose freeLoc, a WiFi-based device-free
fingerprints localization system, that aims to solve the problem
of CSI fingerprints inconsistency caused by different users’
motions. Specifically, freeLoc applies domain-adaptive deep
learning techniques to our specific problem, regards known
users’ motions as the source domains, and takes the changed
unknown users’ motions as the target domains. To better learn
location fingerprints features independent of users’ motions,
we make full use of the distribution of large unlabeled data,
as well as the matching condition of location predictor and
domain discriminator. In addition, to reduce the labeling cost
of source domains data while ensuring the performance, we
use data augmentation to obtain rich and diverse labeled data.
Our experiments on real-world scenario show that freeLoc not
only at worst improves accuracy 35% over other techniques,
but also remains robust against multiple unlabeled different
motions and users. In this way, freeLoc achieves the goal
of reducing constraints on users’ motions while maintaining
accurate localization.
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