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Figure 1: Users are often accompanied by various gait or non-gait human behaviors when walking, e.g., normal continuous
walking (B1), bending or waving (B2), carrying luggage (B3). WiFi propagation signals under different non-gait human behaviors
are different, which leads to inconsistency in user gait patterns based on WiFi, thus making the gait recognition system
ineffective. freeGait can accurately extract the users’ gait features despite their accompanying various non-gait behaviors.

ABSTRACT
Recently,WiFi-based gait recognition technologies have beenwidely
studied. However, most of them work on a strong assumption that
users need to walk continuously and periodically under a constant
body posture. Thus, a significant challenge arises when users en-
gage in non-periodic or discontinuous behaviors (e.g., stopping
and going, turning around during walking). This is because vari-
ations of non-gait behaviors interfere with the extraction of gait-
related features, resulting in recognition performance degradation.
To solve this problem, we propose freeGait, which aims to mitigate
the user’s non-gait behaviors of WiFi-based gait recognition sys-
tem. Specifically, we model this problem as domain adaptation, by
learning domain-independent representations to extract behavior-
independent gait features.We consider human behaviors with labels
of users as source domains, and human behaviors without labels
of users as target domains. However, directly applying domain
adaptation to our specific problem is challenging, because the clas-
sification boundaries of the unknown target domains are unclear
for WiFi signals. We align the posterior distributions of the source
and target domains, and constrain the conditional distribution of
the target domains to optimize the gait classification accuracy. To
obtain enough source domains data, we build a data augmentation
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module to generate data similar to the labeled data, and use su-
pervised learning to make the data different between users. We
conduct experiments with 20 people and 3 different scenarios, and
the results show that accurate predictions of a total of 15 domains
data can be achieved by only collecting and labeling a small amount
of data from 6 source domains, and user classification accuracy can
be improved by up to 45% compared to other existing techniques.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods.

KEYWORDS
WiFi-based Sensing; Gait Recognition; Domain Adaptation; Data
Augmentation.

ACM Reference Format:
Dawei Yan1, Panlong Yang2 *, Fei Shang1, Feiyu Han1, Yubo Yan1 * and
Xiang-Yang Li1, 1University of Science and Technology of China, 2Nanjing
University of Information Science and Technology. 2024. freeGait: Liberaliz-
ing Wireless-based Gait Recognition to Mitigate Non-gait Human Behav-
iors. In International Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing (MobiHoc ’24),
October 14–17, 2024, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3641512.3686362

1 INTRODUCTION
WiFi-based gait recognition has been widely studied due to its ad-
vantages of ubiquity, non-contact and non-invasion [33, 40, 42, 44,
45]. The basic principle is that person’s movements while walk-
ing disturb WiFi signals such as channel state information (CSI),
and each person’s natural walking pattern is unique. This differ-
ence in limb movement patterns and speed has been shown to

241

https://doi.org/10.1145/3641512.3686362
https://doi.org/10.1145/3641512.3686362
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641512.3686362&domain=pdf&date_stamp=2024-10-01


MobiHoc ’24, October 14–17, 2024, Athens, Greece Yan et al.

be used as a signature of an individual’s gait, thereby identifying
the user. Although previous WiFi-based gait recognition systems
have provided certain conveniences for human identification, their
real-world deployment still faces significant problems.

In particular, the current WiFi-based gait recognition systems
are studied based on the assumption that the walking patterns of
users are periodic. However, we observe that in real-world scenar-
ios, users not only move their legs when walking, but may also
be accompanied by various other non-periodic human behaviors
(e.g., turning around, bending, and carrying luggage), as shown in
Fig. 1. What’s more, in many cases, people do not walk normally
and continuously, but may stop and go. Such non-periodicity and
discontinuity are challenging for scenarios that require long-term
human recognition, because the unique gait-related features cannot
be comprehensively extracted, resulting in system failure.

Most of WiFi-based gait recognition schemes utilize CSI to ex-
tract gait-related features. Since CSI represents the fine-grained
channel characteristics, it is susceptible to human behaviors. As
shown in Fig. 1, we give an example. It can be seen that the reflec-
tion paths between the laptop (i.e., Tx) and the WiFi router (i.e.,
Rx) change due to differences in human behaviors, resulting in the
inability to accurately separate gait features even if the same people
walks along the same path, and ultimately making different users’
gait features are mingled together. It indicates that human non-gait
patterns extremely interfere with the distribution of gait features.

Theoretically, if we collect sufficient CSI data from all possible
behaviors of each user, we can train a gait recognition model that is
robust to human behaviors. However, considering the diversity and
richness of human behaviors and the impact of various walking
paths on gait patterns, this would be extremely labor-intensive.
More importantly, there are many non-gait human behaviors and
walking paths that may not be taken into account, so this solution is
not practical in real-world scenarios. In addition, combining human
behavior identification solutions with gait recognition systems is a
feasible solution, but this requires accurately detecting each human
behavior and separating it from the mixed CSI to eliminate the
impact of human behaviors on gait features. Unfortunately, we still
need to collect data on all possible human behaviors, and signal
separation is a challenging problem.

Furthermore, although there are some works to eliminate the
influence of the walking path by estimating the walking direction,
this requires strictly setting upmultiple transceivers, and users need
to walk normally and continuously in a specific area [2, 34, 45].
However, these setups are onerous for many scenarios and users,
hindering the application of gait recognition. In this paper, we aim
to achieve accurate gait recognition of users accompanying many
different human behaviors using only a pair of WiFi transceiver.

Therefore, to develop such a system, we have three challenges:
• Users are often accompanied by various non-periodic or
discontinuous human behaviors when walking, which have
different influences onWiFi-based gait patterns. To eliminate
these influences, we need to cover all possible human behav-
iors of the users when collecting gait data that represents
the users’ identity, but this is difficult.

• Other items also affect the gait patterns of users, such as
walking paths and speeds. To eliminate the influence of other
items, we still need to cover all other items even for the same

human behavior. However, it is impractical to label the data
of all other items associated with the user.

• Extracting fine-grained gait patterns from a pair of WiFi
transceiver is difficult. When the user is far away from the
WiFi transceiver or the user’s walking direction is close to
parallel to the WiFi transceiver, it may cause CSI noise to
flood the gait pattern.

To address the above challenges, we present freeGait, a WiFi gait
recognition system based on data processing methods and a fine-
grained deep learning framework, only by collecting and labeling a
small amount of CSI data from one WiFi transceiver.

Firstly, we perform a series of processing on the raw CSI and ob-
tain refined spectrograms reflecting the users’ gait patterns. Specif-
ically, we observe that using principal component analysis (PCA) at
the subcarrier-level and extracting the first principal component
can better remove environmental noise. Then, to eliminate auto-
matic gain control (AGC) noise while retaining the original data
characteristics, we use density-based spatial clustering of applica-
tions with noise (DBSCAN) on the CSI and extract the class with the
highest density. These two technologies make it possible to extract
dynamic target signals well even when the user is far away from
the transceiver. Additionally, we use short-time Fourier transform
(STFT) to obtain the spectrograms.

Secondly, we model the acquisition of gait features independent
of human behaviors and walking paths as the domain adaptation
problem. Specifically, freeGait considers human behaviors and walk-
ing paths in the database with users’ IDs as the source domains, and
unknown human behaviors and walking paths without users’ IDs
as the target domains. The network model is then jointly trained
using labeled user’s ID data in the source domains and unlabeled
data in the target domains, and the ultimate goal is to learn com-
mon features (gait patterns) of the labeled and unlabeled data, while
downplaying the differences between source and target domains
(effects of different human behaviors and walking paths). In this
way, freeGait can predict users from different human behaviors and
walking paths without relabeling users’ IDs for new data.

Finally, to obtain enough source domains data to eliminate the
influence of different human behaviors and other items, we utilize
data augmentation technology to generate synthetic data similar
to the collected labeled data with users’ IDs, allowing us to scale
the labeled data to cover a wide range of human behaviors and
other items. Specifically, we collect some data for each user walk-
ing along different paths (e.g., one-minute data), combine it with
human behaviors data in the source domains, and use an adversarial
autoencoder (AAE) [22], generating similar but different gait data
for each user separately. In addition, we also incorporate the idea
of supervised learning to avoid generating extremely close sample
data among different users. In this way, freeGait can predict users’
gait under more human behaviors, walking paths.

Overall, the main contributions of this paper are as follows:
• In this paper, we analyze the impact of users’ non-periodic
or discontinuous behaviors on WiFi-based gait recognition.
Then, we propose freeGait, a WiFi-based gait recognition
system, aim to mitigate users’ diverse non-gait behaviors
while maintaining accurate gait recognition.

• We design domain adaptation techniques to reduce the cou-
pling of gait patterns with behaviors and paths, and enable
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(c) People #3.
Figure 2: Spectrograms of three different people walking with three different human behaviors (behavior 1: normal continuous
walking; behavior 2: stop-and-go and bending; behavior 3: individual carrying luggage). Even for the same people, gait patterns
are different in different human behaviors.

freeGait to learn behavior- and path-independent gait fea-
tures. Then, we design data augmentation method so that
using only a small amount of labeled data with users’ IDs,
freeGait can perform well in processing a variety of rich gait
data of behaviors and paths without user IDs.

• We implement freeGait with a pair of WiFi transceiver and
conduct extensive experiments. We define 6 different human
behaviors, 3 different walking paths and 3 different walking
speeds, and recruit twenty volunteers of different heights
and weights to participate in the experiment. The results
show that accurate predictions for a total of 15 domains can
be achieved by collecting and labeling only a small amount
of data from 6 source domains, which is at worst 45% im-
provement over other existing techniques.

2 HUMAN BEHAVIORS IMPACT ANALYSIS
When users walk in different time periods accompanied by different
human behaviors, the WiFi signals reflected by the human body are
different due to complex and variable multipath effects, even for the
same person. To verify the impact of different human behaviors on
CSI, we perform preliminary tests in an empty space of 12𝑚 × 10𝑚.
Specifically, we invite three volunteers of different heights and
weights to participate in the tests. They walk along the same path
in a specific area of the space, and are asked to perform three differ-
ent human behaviors, i.e., normal continuous walking, stop-and-go
and bending, and individual carrying luggage as shown in Fig. 1.
We build Tx and Rx based on the industrial personal computer (IPC)
equipped with Intel 5300 network interface card (NIC), working at
the ISM band 5GHz/HT40-, and we set the packet sending rate to
1000Hz. Then, we collect the CSI of each volunteer while walking
under each human behavior, and each condition repeats three times.
It is worth noting that we only analyze the impact of human behav-
iors on gait patterns, so we control the volunteers to walk in the
same path each time, and the scenario (including the surrounding
environment and transceiver) does not change.

We extract the amplitude of each CSI packet and use the 30
subcarriers of the first antenna of Rx to specifically analyze the
gait patterns of different people accompanied by different human
behaviors. We perform a series of preprocessing on the raw CSI
amplitude, including data denoising and STFT, to obtain the spectro-
grams under each condition, and the detailed settings can be found

Tx Rx
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path
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Figure 3: Overview of freeGait: consist of data preprocessing,
data augmentation and cross-domain gait recognition.

in Section 3.2. Fig. 2 shows the gait patterns of three volunteers
while walking accompanied by three different human behaviors. It
can be seen that even if the same people walk along the same path
and direction, the differences in gait patterns can be large when
the accompanying human behaviors are different. Furthermore,
this variation due to the influence of human behaviors may be
greater than the variation between gait patterns of different people.
Therefore, gait recognition may be poor when subjects walk accom-
panied by untrained human behaviors. From the above analysis, we
think that the human behaviors that accompany walking do have
a significant impact on gait patterns. Next, we illustrate how our
proposed techniques and models eliminate this effect, using only a
small amount of labeled gait data from human behaviors.

3 SYSTEM DESIGN
3.1 Overview
As shown in Fig. 3, we place one Tx and one Rx in the physical
space to form a WiFi propagation link, so that a gait sensing area
can be constructed. Specifically, we collect the CSI of each subject
when walking within the sensing area and input them into the
data preprocessing module to obtain the spectrograms. Then, A
small part of the data (i.e., known behaviors and paths) with users’
IDs enters the data augmentation to expand more potential human
behaviors and walking paths. Finally, the augmented labeled data
(source domains data) and unlabeled data (target domains data)
are input the cross-domain gait recognition to learn gait features
independent of non-gait human behaviors and walking paths.

3.2 Data Preprocessing
Subcarrier-level PCA. Raw CSI collected using WiFi NIC con-
tains many noise [14], generally manifested as environmental noise
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Figure 4: Data preprocessing.

and AGC noise [4, 25], and environmental noise obeys Gaussian
distribution in the entire space [39]. In our setup, we use one
WiFi transceiver and perform continuous gait recognition of the
user’s entire walking process. When the user is far away from
the transceiver or the walking direction is close to parallel to the
propagation path, the gait pattern may be overwhelmed by the
noise. At this time, traditional denoising methods (e.g., lowpass,
wavelet) perform poorly [21]. In addition, the effect of traditional
PCA denoising in the time dimension depends on the selection
of the number of principal components. Selecting more or fewer
components may result in retaining environmental noise or los-
ing important target signals. When a dynamic signal is masked by
environmental noise, it loses effectiveness because the principal
components do not clearly correspond to the dynamic signal.

Fortunately, we shift the perspective to the subcarrier-level. We
transpose the CSI matrix to represent the reflection paths of all
subcarriers in the environment over a period of time. As shown in
Fig. 5a, in the subcarrier-level, CSI amplitude changes represent
changes in reflection paths caused by humanmotion. Assuming that
the static environment remains unchanged, CSI in the subcarrier
dimension space show higher correlation. In particular, we employ
a covariance method to compute PCA of CSI data collected at dif-
ferent distances and measure the correlation of them [31, 46]. As
shown in Fig. 5b, the contribution of the first principal component
in the time dimension decreases with increasing distance, while
the contribution of the first principal component in the subcarrier
dimension remains high at different distances. Therefore, using
subcarrier-level PCA, we only need the first principal component
to remove environmental noise, and the effect performs well even
if the noise overwhelms the gait pattern signal, as shown in Fig. 4a.

AGC removal.After removing the environmental noise, we also
need to remove the influence of AGC noise. Previous schemes using
the ratio of two antennas can effectively remove AGC noise [38].
In this paper, to completely preserve the distribution of CSI data,
we do not use the ratio method. According to our observation, the
noise caused by AGC is uncertain and sparse points around the dy-
namic signal in the time dimension [19, 20], so we can filter out the
noise caused by AGC according to the sparse density distribution.
Specifically, we utilize the DBSCAN spatial clustering method [6]
to cluster AGC-related points according to their sparse distribu-
tion density and retain only the cluster with the largest number of
scatter points [46], and the results are shown in Fig. 4b.

Spectrogram generation and enhancement. To represent the
gait features of different people while walking, we perform STFT on

(a) CSI subcarrier level.
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Figure 5: The first component of the subcarrier-level PCA is
higher than time-level PCA.

the CSI processed above to obtain a spectrogram reflecting time and
frequency information. Specifically, we first apply a sliding window
to slice the time series CSI, each segment contains 3s (i.e., 3000 CSI
packets), and the sliding window is 1s (i.e., 1000 CSI packets apart).
Then, we perform STFT on each slice. To maintain the balance of
time and frequency resolution, we set the FFT size to 1024 and
the sliding window step size to 6, which can achieve a frequency
resolution of 0.95Hz and a time resolution of 6 ms, which has a
better discrimination effect on human gait signals between 10Hz
and 70Hz. The spectrogram is shown in Fig. 4c. We only show the
image of 0-80Hz, where yellow indicates higher reflected energy.

Furthermore, to reduce the noise of the spectrogram to obtain
a refined spectrogram, we used some technologies in WifiU [33]
to enhance each spectrogram. Specifically, we add the amplitudes
of the corresponding spectrograms of 30 subcarriers to obtain the
superimposed spectrogram, and only retain 0-80Hz. We then nor-
malize each FFT block and subtract the mean of the amplitude of
the entire spectrogram to remove background noise (anything less
than 0 is set to 0). Finally, we apply a two-dimensional Gaussian
filter with size=10 and 𝛿 = 0.4 to obtain the enhanced spectrogram,
and the result is shown in Fig. 4d.

3.3 Cross-Domain Gait Recognition
Feature extraction. As shown in Fig. 6, we input all labeled and
unlabeled data together into the feature extractor to output their
feature vectors. We use the widely adopted CNN and LSTM deep
learning architectures to extract gait features [8, 13]. Particularly,
we use three-layer stacked CNN and three-layer stacked LSTM.
At each layer of the CNN, we use convolutional layers with 2D
convolution kernels, utilize batch normalization layers to speed
up training with the batch size is 256, insert rectified linear units
(ReLUs) to introduce nonlinearity, and use max pooling layers to
reduce the size of the representation. In addition, LSTM has good
performance in time series data processing. It is used to learn the
temporal dynamic features extracted by CNN. Each LSTM layer
has the same number of neurons and the number of each LSTM
is 128, and uses the Sigmoid activation function. Therefore, given
the input data S𝑖 , we can obtain the features Z𝑖 through CNN and
LSTM:

Z𝑖 = CNN(S𝑖 ;Θ𝑐𝑛𝑛) ⊕ LSTM(S𝑖 ;Θ𝑙𝑠𝑡𝑚), (1)
where Θ𝑙𝑠𝑡𝑚 and Θ𝑙𝑠𝑡𝑚 are the parameters of CNN and LSTM, ⊕
represents the operation of concatenation.

Gait classification. As shown in Fig. 6, after obtaining the
feature Z𝑖 , we use three fully connected layers [17] and the acti-
vation function ReLU to learn the representation V𝑖 of S𝑖 , and let
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in freeGait.

V𝑖 through an output layer with an activation function of softmax
to obtain the predicted probability vector 𝑦𝑖 of the gait. It is worth
noting that the reason why three fully connected layers are used is
to obtain more parameters, and more fully connected layers not im-
prove the performance much. In addition, to improve the accuracy
of gait classification, we use a combination of supervised learning
and unsupervised learning [11]. Specifically, we predict user labels
𝑦𝑎
𝑖
and 𝑦𝑢

𝑖
for labeled and unlabeled data respectively. For all data,

we use cross-entropy as the loss function for gait classification:

L𝑎 = − 1
𝑛𝑎

𝑛𝑎∑︁
𝑖=1

𝐾∑︁
𝑘=1

y𝑎
𝑖𝑘
log

(
ŷ𝑎
𝑖𝑘

)
,

L𝑢 = − 1
𝑛𝑢

𝑛𝑢∑︁
𝑖=1

𝐾∑︁
𝑘=1

ŷ𝑢
𝑖𝑘
log

(
ŷ𝑢
𝑖𝑘

)
,

(2)

where 𝑛𝑎 and 𝑛𝑢 are the numbers of labeled and unlabeled data
used for training, and 𝐾 is the total number of users.

Domain discrimination. Domain-adversarial training of neural
networks (DANN) is a special case of transfer learning [26]. We use
the idea of DANN to eliminate the effects of human behaviors and
walking paths. Specifically, we define different walking paths and
human behaviors as different domains, and the domain discrimina-
tor is used to identify different walking paths and human behaviors.
Our goal is to enable the feature extractor to fool the domain dis-
criminator, thereby producing gait features that are independent of
human behaviors and walking paths.

As shown in Fig. 6, we input the output Z𝑖 of the feature ex-
tractor into the domain discriminator and predict the domain label
𝑑𝑖 through the same process. The domain discriminator is also
composed of three fully connected layers with activation function
ReLU and an output layer with softmax activation function. We use
cross-entropy as the loss function for domain label prediction:

L𝑑 = − 1
𝑛𝑑

𝑛𝑑∑︁
𝑖=1

𝐷∑︁
𝑗=1

d𝑖 𝑗 log
(
d̂𝑖 𝑗

)
, (3)

where 𝑛𝑑 is training data number, 𝐷 is the number of domains.
However, directly applying DANN to our specific problem of gait

recognition does not work well. In fact, for WiFi signals, it is diffi-
cult to distinguish the features of different domains and the features
of different gaits, which makes the classification of unknown target
domains very challenging. To improve the classification perfor-
mance of the target domains, we adopt two operations to optimize
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Figure 7: We train AAE-based data augmentation with dif-
ferent distributions 𝑁 (0, 𝑘) for each user 𝑘 to generate more
data similar to the labeled data.

the model. Firstly, we concatenate Z𝑖 with the predicted label 𝑦𝑖 of
the gait classification, align the posterior distributions of the source
and target domains:

P𝑖 = Z𝑖 ⊕ ŷ𝑖 , (4)
which together feed into the domain discriminator to predict the
domain label d̂𝑜

𝑖 𝑗
. We use cross-entropy as the loss function:

L𝑜 = − 1
𝑛𝑑

𝑛𝑑∑︁
𝑖=1

𝐷∑︁
𝑗=1

d𝑖 𝑗 log
(
d̂𝑜𝑖 𝑗

)
. (5)

Secondly, we add classification constraints to the target domains,
and use the conditional entropy as the loss function for target
domain classification:

L𝑡 = − 1
𝑛𝑡

𝑛𝑡∑︁
𝑖=1

d̂𝑡𝑖 log
(
d̂𝑖
)
. (6)

where𝑛𝑡 is the number of target domains data, d̂𝑡
𝑖
is the predict label

of target domain. In this way, the domain discriminator attempts to
separate target domains data with the same domain label, thereby
better obtaining domain-independent gait features.

Model training. The overall loss function of our model:
L𝑎𝑙𝑙 = L𝑎 + 𝛼L𝑜 + 𝛽L𝑑 + 𝛾L𝑜 + 𝜆L𝑡 , (7)

where 𝛼 , 𝛽 and 𝛾 are hyperparameters. The goal of model train-
ing is to minimize the loss L𝑎 + 𝛼L𝑜 of gait classification, while
maximizing the loss 𝛽L𝑑 +𝛾L𝑜 + 𝜆L𝑡 of the domain discriminator.
Note that the loss of the domain discrimination is inverted when
backpropagated, while the gait classification is directly backpropa-
gated [7]. We use all labeled and unlabeled data to train the model
and iteratively update the parameters during the training process.

3.4 Data augmentation
To better eliminate the influence of different walking paths and
human behaviors on gait patterns, a feasible solution is to collect as
much CSI as possible of different walking paths and human behav-
iors. However, the time and labor costs of collecting and labeling
data from different users are huge. In addition, although there are
works to calculate the user’s walking direction through two mutu-
ally perpendicular WiFi transceiver links [34, 44, 45], this requires
strictly accurate prior position knowledge of the transceiver and
requires the user to walk normally and continuously in a specific
area, so it cannot meet the needs of this paper. Fortunately, data
augmentation schemes have been widely used recently, aiming to

245



MobiHoc ’24, October 14–17, 2024, Athens, Greece Yan et al.

expand the training data set by generating more equivalent data
from limited data [1, 29, 30]. Thus, we use the idea of data augmen-
tation to generate more data on potential behaviors and paths.

Specifically, we design the AAE [22] as shown in Fig. 7, and use a
separate AAE for each user’s labeled gait data, that is, if 𝐾 users are
need to be identified, we train 𝐾 AAEs. AAE is a general method
that can convert autoencoders into generative models. It combines
adversarial ideas, and its typical network architecture consists of a
standard autoencoder (AE) [24] and a generative adversarial Network
(GAN) [10]. AAE aims to enable the decoder to generate realistic
samples from any sampled data point by encouraging the encoder’s
output to completely fill the space of the prior distribution. In
this paper, we use a small amount of processed spectrogram data
accompanying human behavior and different walking paths (i.e.,
source domain data) for data augmentation, and we input these
data 𝑆𝑘 into the corresponding AAE #𝑘 for training. Firstly, the
data 𝑆𝑘 of the 𝑘𝑡ℎ AAE into the encoder of AAE #𝑘 to generate
the latent vector 𝑧 ∼ 𝑞(𝑧) , where 𝑞(𝑧) is the aggregate posterior
distribution. 𝑧 is sent to the decoder, and the vector 𝑆𝑘 is generated
to reconstruct the data 𝑆𝑘 . We define the reconstruction loss L𝑘

𝐵
using Mean Square Error (MSE):

L𝑘𝐵 =
1

2𝑛𝑘𝑔

𝑛𝑘𝑔∑︁
𝑖=1

(
𝑆𝑘𝑖 − 𝑆𝑘𝑖

)2
, (8)

where 𝑛𝑘𝑔 is the number of samples.
Secondly, we train the discriminator to normalize the rebuilt

data. At this time, the encoder of AE becomes the generator of
GAN, and its output 𝑆𝑘 is sent to the discriminator together with
the vector 𝑧′ that obeys the prior distribution 𝑝 (𝑧). Here, we choose
the normal distribution 𝑁 (0, 𝑘) as the prior distribution 𝑝 (𝑧). For
the discriminator, the label 𝑙𝑘 is 0 when 𝑆𝑘 is used as input, and the
label 𝑙𝑘 is 1 when 𝑧′ is used as input. Use cross entropy as the loss
function L𝑘

𝐺
of the discriminator:

L𝑘𝐺 = − 1
𝑛𝑘𝑔

𝑛𝑘𝑔∑︁
𝑖=1

(
𝑙𝑘𝑖 log

(
𝑙𝑘𝑖

)
+
(
1 − 𝑙𝑘𝑖

)
log

(
1 − 𝑙𝑘𝑖

))
. (9)

However, we find that since we use separate AAE for each user
for data augmentation, the rebuilt data samples are very likely to be
located among different users, which in turn affect the classification
accuracy of different users. In order to avoid this situation, as shown
in Fig. 7, in addition to the prior distribution 𝑝 (𝑧) of each AAE being
different (the variance of the normal distribution is different), we
also feed the user’s label 𝑦 (one-hot form) and the latent vector 𝑧
into the decoder together to force the decoder generate data that is
highly relevant to users. Our goal for the augmented data is that
the size of the rebuilt data for the 𝑘th user is 10 times larger than
the size of the original labeled source domain data S𝐿 . Finally, we
collect all rebuilt data S𝑅 as well as source domain data as labeled
augmentation data S𝐴 = S𝑅 ∪ S𝐿 .

4 PLATFORM IMPLEMENTATION
4.1 Hardware and environments
We build the hardware platform based on two IPCs equipped with
Intel 5300 NICs, one of them used as Tx with one antenna, another
used as Rx with three antennas, and fixed on a tripod 0.5m above

Tx

Rx

(a) Scenario 1.

Tx

Rx

(b) Scenario 2.

Tx
Rx

(c) Scenario 3.
Figure 8: Three experimental scenarios.
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Figure 9: (a) Three different traces and (b) twenty volunteers
with different heights and weights.

(a) normal-and-continuous 
(B1)

(b) bending over 
(B2)

(c) swinging arms
 (B3)

(d) stop-and-go
 (B4)

(e) turning around
 (B5)

(f) carrying luggage
 (B6)

Figure 10: Six common human behaviors when users walk.

the ground to better detect human movement. As shown in Fig. 8,
we deploy our experiments in three different environments, and
the distance between Tx and Rx is 6m. Note that the environments
and the positions of WiFi transceiver remain unchanged during
all tests. Although changes in the environment also cause changes
in CSI, we do not analyze this in the paper. In addition, all data
are preprocessed based on Matlab R2020b on a computer with
Intel-i5 2.7GHz CPU. The deep learning model training and result
prediction are completed on a server with NVIDIA 3090 graphics
card based on Python 3.10 with CUDA 11.8 and Pytorch 2.0. We
train our model offline with a total of 200 epochs. During training,
the Adam optimizer is used with a learning rate of 0.001.

4.2 Data collection
To collect CSI of different human behaviors and walking paths, we
considered six human behaviors (i.e., B1-B6) as shown in Fig. 10,
and three paths (i.e., tr1-tr3) as shown in Fig. 9a. We recruit twenty
volunteers of different heights and weights (i.e., P1-P20) to record
the CSI of different people in three scenarios as shown in Fig. 8.
The allocation detail of scenarios and volunteers is as shown in
Fig. 9b. We install the CSI Tool on two IPCs and collect CSI using in-
jection/monitoring mode with the sampling rate set to 1000Hz [12].
We ask each volunteer to walk and collect CSI as follows: (i) Each
user walks along tr1 at a normal speed according to six different
human behaviors, and each human behavior is repeated three times.
(ii) Each user walks along tr2 at a normal speed according to six
different human behaviors, and each human behavior is repeated
three times. (iii) Each user walks along tr3 according to human
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(d) freeGait.
Figure 11: The location prediction confusion matrices obtained after the predicted data of ten locations pass through the basic
CNN, AAE-only, domain adaptation-only and freeGait respectively.

Table 1: Classification results of the four methods.
Method TPR FPR

Basic-CNN 47.87% 26.06%
AAE-only 65.35% 17.33%

Domain-adaptation-only 72.01% 14.00%
freeGait 92.29% 3.86%

behavior 1 (i.e., B1) at three different speeds (i.e., slow (S1), normal
(S2), fast (S3)) for one minute at each speed.

Then, we follow themethod in Section 3.2 to perform data prepro-
cessing and obtain the spectrograms. Specifically, there are

∑𝑁𝑏

𝑖=1 𝑁𝑖
sets of spectrogram data for each user (𝑁𝑖 is the number of sliced
data in each case, 𝑁𝑏 is the total number of cases, i.e., the number of
domains), and the size of each group of data is 3× 80× 458 (antenna
× frequency × time). We divide the data into 6+ 6+ 3 = 15 domains
based on walking paths and human behaviors, and randomly divide
the data in each domain into 50% training data and 50% testing
data. Furthermore, for the training data, the source domain data
has user labels, while the target domain data does not have user
labels. Additionally, all tags are encoded using one-hot.

4.3 Baseline methods
• Basic-CNN is used as the baseline, i.e., without data aug-
mentation and domain adaptation, labeled and unlabeled
data are directly input into CNN and LSTM based feature
extractors and gait classifiers to directly predict users’ labels.
Some previous work is based on this scheme [45].

• AAE-only implements only freeGait’s AAE and connects
them directly to the feature extractor and gait classifier with-
out domain adaptation.

• Domain-adaptation-only implements only the domain
adaptation network of freeGait, i.e., directly feeds labeled
and unlabeled data into the feature extractor, gait classifier
and domain discriminator without AAEs.

5 EVALUATION
5.1 Basic performance of freeGait
To evaluate the basic performance of freeGait, we first classify the
gait data of three volunteers in Scenario 1. We select 6 of the 15
combinations of human behaviors, traces and speeds of these three
volunteers in the training data as source domains data (B1_tr1,
B4_tr1, B6_tr1, B5_tr2, S1_tr3, S3_tr3), i.e., with user labels, and the
remaining training data is used as target domains data, i.e., without
user labels, and all training data contains domain labels. During
the training process, both Domain-adaptation-only and freeGait
are able to train their respective models using data with user labels
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Figure 12: Impact of augmented data amount.

and data without user labels, but Basic-CNN and AAE-only just
use data with user labels to train their models. We then compare
freeGait with the above baseline methods.

We use True Positive Rate (TPR) and False Positive Rate (FPR)
to evaluate classification performance, where 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , and
𝐹𝑃𝑅 = 𝐹𝑃

𝑇𝑁+𝐹𝑃 , TP, TN, FP, and FN represent the number of true
positives, true negatives, false positives and false negatives. Tab. 1
shows the classification results of four methods. As can be seen, the
accuracy of the Base-CNN is extremely low because it only uses less
labeled data for training. AAE-only and Domain-adaption-only im-
prove some accuracy through data augmentation and domain adap-
tation respectively, but there is still a lot of room for improvement.
Compared with these techniques, freeGait can improve accuracy
by at least 20% and in the worst case 45%.

To more intuitively show the comparison results of freeGait with
other methods, we also provide the gait classification confusion
matrix, and the results are shown in Fig. 11. From the results, com-
pared to other schemes that cannot accurately distinguish multiple
users, freeGait can achieve high classification accuracy for all users.

5.2 Impact of augmented data amount
We already know that augmented data can improve the performance
of freeGait. To analyze in detail the effect of the amount of aug-
mented data on the users’ gait classification effect, we select three
users in Scenario 1 for verification. Specifically, we use pre-trained
AAE-based data augmentation models to generate augmented data
that are 0 times, 2 times, 4 times, 8 times, and 16 times the amount of
source domains data, respectively. Then, we use these data to train
freeGait respectively, and the accuracy of users gait classification is
shown in Fig. 12. The results show that the classification accuracy
increases as the amount of augmented data increases. However,
when there is too much augmented data (16 times), the classifica-
tion accuracy decreases slightly. This may be caused by excessive
enhancement that makes the sample distribution uneven.

5.3 Impact of people’s number
The increase in the number of users and different user affect the
classification accuracy of gait features. To further examine the
performance of freeGait, we test freeGait on different users and a
larger number of users. Specifically, we divide 20 volunteers into
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(d) Six people.
Figure 13: Classification results for different people and different numbers of people.
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Figure 14: Classification accuracy for different behaviors, traces, speeds, and environments.
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Figure 15: Impact of source domains’ number.

four different group sizes of 3, 4, 5, and 6 people. The confusion
matrix for classification is shown in Fig. 13. It can be seen that
as the number of people increases, freeGait can still achieve 70%
classification accuracy for each user, but the overall classification
accuracy decreases slightly, because the features of domains are
also gradually increasing. We plan to optimize our model in future
work to be able to predict more diverse users.

5.4 Impact of different behaviors, traces and
speeds

Different human behaviors, walking paths and walking speeds all
affect gait patterns. In order to evaluate the robustness of freeGait
to these influencing factors, we divide the users’ gait data into
15 groups according to domain categories, and predict users’ IDs
respectively (the source domain data for training is the same as
Section 5.1), the accuracy is shown in Fig. 14. The results show that
for the six (behavior, speed, trace) including the source domains,
the users gait classification accuracy is above 81%, while for the
nine (behavior, speed, trace) that are all in the target domains, the
users gait classification accuracy still higher than 72%, although it
has declined. Therefore, freeGait remains robust to different human
behaviors, walking paths and walking speeds.

5.5 Impact of different environments
Different environments affect the collected CSI data. In order to
evaluate the robustness of freeGait to different environments, we
divide the data into three groups according to the three scenarios
as shown in Fig. 8, and predict users’ IDs respectively (the source
domain data for training is the same as Section 5.1). The results
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(a) Basic-CNN.
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Figure 16: Visualization results of gait features after going
through Basic-CNN, DANN-only and freeGait.

in Fig. 14d show that for the three scenarios, the users gait clas-
sification accuracy is above 83%, thus freeGait remains robust to
different environments. It is worth noting that we evaluate freeGait
in three scenarios separately without predicting users’ IDs across
environments, which is beyond the scope of this paper.

5.6 Impact of source domains’ number
Intuitively, the amount of source domains used for training affects
the model’s accuracy. To analyze the impact in detail, we pre-train
the deep learning model of freeGait and predict users’ IDs with the
number of source domains ranging from 1 to 15. The result is shown
in Fig. 15, the users’ gait classification accuracy increases as the
number of source domains increases, and the classification accuracy
of freeGait is always higher than Basic-CNN with the same number
of source domains. In real-world applications, users can choose an
appropriate number of source domains by considering the balance
between accuracy and training data collection cost.

5.7 Visualization of gait feature
Our model aims to learn representations of gait features that are
independent of discontinuous human behaviors and walking paths.
To verify that the model has learned the representation, we use
t-SNE [32] to reduce the dimensionality and display it in 2D space.
Specifically, we select the data of two human behaviors of two users
from the data in the target domain that does not carry user tags, i.e.,
four domain-user pairs. Then, we randomly select several samples
for each domain-user pair and draw the learned representations
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of these samples through Basic-CNN, DANN-only (i.e., Domain-
adaptation-only) and freeGait respectively. The results are shown in
Fig. 16, where different colors (orange and blue) represent different
users, and different shapes (circles and triangles) represent different
human behaviors. When Basic-CNN is used to extract gait features,
the gait features of two users overlap. Although DANN-only can dis-
tinguish the gait features of two users, these features are scattered
and not concentrated into two clusters. In addition, the gait features
extracted by freeGait are concentrated in two clusters, while there
is almost no overlap between different users. This proves that the
proposed model learns the target features.

6 DISCUSSIONS AND FUTUREWORK
Diverse real-world non-gait behaviors. In the real world, hu-
man non-gait behaviors are very diverse and complex beyond the
six behaviors we defined. Specifically, there are many similar or
unpredictable behaviors, such as falling, lying down, jumping and
etc. Verifying these richer behaviors is essential for the promotion
of freeGait. Specifically, we plan to use an iterative model training
approach in future work to update the non-gait behavior library
and continuously enhance the adaptability of freeGait to more un-
seen human behaviors. Additionally, we aim to conduct a detailed
analysis of various human behaviors and explore metrics that can
evaluate non-gait behaviors, to further demonstrate the impact of
different non-gait behaviors on gait recognition systems.

Cross-environment gait recognition. In this paper, we do
not migrate the same user in different environments, because this
paper focuses on the impact of human behaviors on the gait recog-
nition system. In practice, due to the complexity of the real world,
cross-environment gait recognition is indeed an important research
problem. We plan to explore the possibility of cross-environment
gait recognition in future work. Specifically, we can accurately
identify different environments or even similar environments, and
regard the environment as domain, so that cross-domain technology
can also be applied to realize cross-environment gait recognition.
In addition, we plan to implement a WiFi-based gait recognition
system that simultaneously considers influencing factors such as be-
haviors, trajectories and environments, to promote the deployment
of such solutions in the real world.

7 RELATEDWORK
7.1 WiFi-based gait recognition systems
Compared with vision-based [3], acoustic signal-based [36], and
wearable device-based [23] gait recognition technologies, WiFi has
been widely studied recently due to its advantages of ubiquity, non-
contact, and non-privacy invasion. Many systems that accurately
recognize human gait based on commercial WiFi devices. However,
most systems require subjects to walk along specific paths [33,
37, 40–43], and a few systems combine the use of daily activity
features to improve accuracy [15, 27]. These either have severe
restrictions on users’ behaviors or require the collection of large
amounts of data. Recently, there have been works studying gait
recognition schemes that are independent of walking direction and
path, but they require the collection of data from multiple WiFi
transceivers and the subject walking normally and continuously in
a specific area [44, 45, 47]. Compared with the above solutions, we

have considered a variety of discontinuous behaviors that may be
accompanied by the user’s walking. freeGait can accurately identify
the user’s gait by only collecting a small amount of data from a
pair of randomly placed WiFi transceivers, and at the same time
liberalizing the user’s walking requirements.

7.2 Domain adaptation for WiFi sensing
WiFi signals are extremely sensitive to the surrounding environ-
ment. Changes in the environment, different people, and differ-
ent actions all lead to changes in reflected information, which af-
fects the performance of WiFi-based sensing systems. Collecting
enough data is expensive and impractical. To solve this problem,
domain adaptive learning improves the learning performance of
the data-poor target domain by minimizing the data distribution
difference between the source domains and the target domains [7].
Therefore, it is gradually applied in WiFi sensing systems, such
as fingerprint localization [5, 18], object recognition [9], activity
recognition [16, 28, 48], gesture recognition [35] and human identifi-
cation [40]. In this paper, we combine the idea of domain adaptation
with data augmentation to collect a small amount of data to adapt
to the various non-periodic or discontinuous behaviors accompany-
ing users’ walking, so that the WiFi-based gait recognition system
remains accurate while facing users’ non-gait behaviors.

8 CONCLUSION
In this paper, we propose freeGait, a WiFi-based gait recognition
system that is not affected by non-periodic and discontinuous users’
behaviors and walking paths. Specifically, freeGait utilizes a new
perspective to remove CSI noise to obtain fine-grained spectro-
grams, and uses a deep learning framework combined with data
augmentation and domain adaptation to solve the problem of incon-
sistent gait patterns caused by users’ multiple behaviors and paths.
In order that domain adaptation can solve our specific problem, we
align the posterior distributions of the source and target domains,
and constrain the conditional distribution of the target domains to
optimize the domain adaptation model. To address the aliasing of
reconstructed samples in data augmentation, we employ supervised
learning to force the decoder to generate data that is highly relevant
to the user. By leveraging a large amount of unlabeled data from a
pair of WiFi transceiver, freeGait enables the model to learn user
gait features independent of human behaviors and paths with only
a small amount of labeled data. Our experiments on 20 volunteers
in three real-world scenarios show that freeGait outperforms ex-
isting techniques in handling rich unlabeled human behaviors and
walking paths, thereby mitigating non-gait behaviors of the users,
which has the potential to facilitate the practical deployment of
WiFi-based gait recognition systems.
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